Introduction
Hemorrhage remains the most prevalent cause of preventable mortality in civilian and military trauma.1–3 Damage control surgery (DCS) has been used by trauma surgeons as a strategy to target life-threatening injuries while delaying all other surgical care until metabolic and physiologic derangements have been corrected. To further improve outcomes in trauma, damage control resuscitation (DCR) has evolved as an extension of DCS.4 5 DCR is a treatment strategy that attempts to maintain oxygen delivery to essential organ systems while mitigating, and if possible avoiding, conditions that exacerbate hemorrhage while source control is achieved. Collectively, contemporary DCR and DCS are most often used together, and advocate early surgical control of hemorrhage and contamination, permissive hypotension until hemorrhage is controlled, and the use of a balanced blood product resuscitation.4 6 7
Importantly, DCR principles and application do not always require surgeons or surgical interventions. The principals of DCR include: (1) hemorrhage control; (2) low volume, permissively hypotensive resuscitation; (3) rapid control of bleeding and contamination; (4) avoiding overuse of crystalloids and colloids; (5) prevention and/or correction of acidosis, hypothermia, and hypocalcemia; and (6) hemostatic resuscitation (early use of a balanced amount of red blood cells, plasma, and platelets or whole blood).4 Research and technology continue to focus on more efficient ways of delivering and assessing the progress of DCR, and one rapidly evolving adjunct is Resuscitative Endovascular Balloon Occlusion of the Aorta (REBOA).8 9
REBOA is the evolution of a concept for hemorrhage control through balloon occlusion of the aorta which was first used in the Korean War.10 Resuscitative aortic occlusion (RAO) via REBOA offers the opportunity to control bleeding in the abdomen and pelvis by endovascular occlusion of the aorta while avoiding the morbidity, potential danger to healthcare providers, and advanced surgical capability associated with or required for direct aortic clamping via resuscitative thoracotomy (RT).11 The current ER-REBOA is able to be inserted using a 7-French introducer sheath (Prytime Medical, Boerne, Texas, USA) that is placed percutaneously. Placement, even in a pulseless patient, is possible if not by ultrasound guidance than by direct vascular exposure and open placement of the sheath.10 A review from two US Level I trauma centers comparing REBOA with RT in critically injured peri-moribund patients demonstrated a higher probability of survival with REBOA; however, in the concept of DCR, a maneuver such as an RT is potentially not an option. Therefore, limiting the REBOA technology to the same indications as RT may not be an equal comparison and could hinder alternative applications.12 Additionally, the concept of placing a REBOA compatible arterial introducer sheath early has been reported to improve survival outcome in critically injured patients regardless of RAO.13
Such reports, and our institution’s experience, support the concept that the spectrum of REBOA technology (eg, early arterial access, arterial 7 French sheath, REBOA catheter, and RAO) improves the care and outcomes of patients in or at severe risk for hemorrhagic shock and cardiovascular collapse that is independent of RAO for hemorrhage control. Presently, guidelines for the use of REBOA and early 7-French introducer sheath placement, as well as outcomes of these maneuvers, remain in evolution. As this newer technology is incorporated into the care of trauma patients, there is the distinct opportunity for misapplication and overutilization, emphasizing the need to address specialty consensus statements regarding who should and should not be placing REBOA.11
Maine Medical Center (MMC) is the only level I trauma center in the state of Maine and functions as the hub of a rural trauma system that services all of Maine and the majority of Eastern New Hampshire (figure 1). Part of our practice entails the safe application of DCR techniques at our own center and advising referring hospitals on early resuscitation maneuvers prior to transport in this rural trauma system. REBOA was first stocked in the emergency department (ED) at MMC toward the end of 2017 and initially incorporated into routine practice in 2018, and based on our initial use of REBOA technology, we have developed a REBOA oriented treatment paradigm for those in or at significant risk for severe hemorrhage and hemorrhagic shock that we refer to as a ‘Step Up’ REBOA strategy. The step-up concept evolved from literature review and from our institutions initial experience that demonstrated REBOA technology and its potential benefits are not limited to RAO for overt hemorrhage control. We have observed that early arterial access allows continuous blood pressure monitoring and 7 French sheath placement facilitates rapid endovascular treatments for visceral hemorrhage control and intermittent RAO as a method of preferentially diverting blood volume and flow to the heart, lungs, and brain during initial resuscitation (without the need for RT and its associated requirements, morbidity, and risks). Two patients who presented to our institution illustrate this concept.