Discussion
This single-center, retrospective study revealed that injured pregnant females had a more hypercoagulable profile than non-pregnant females and males based on their admission rTEG values—higher α angles and MA values. Pregnant females also had lower LY-30 on admission rTEG. Despite these laboratory derangements, pregnant patients suffered no clinically apparent DVT or PE, contrary to the hypothesis. This finding raises the question of whether sex-related hypercoagulable profiles are harmful, as was found in prior studies linking hypercoagulable profiles to thromboembolic events.19–21 Given the lack of associated VTE events, the range of normal TEG values may need to be redefined in subgroups such as pregnant females. In fact, in pregnant females, this hypercoagulable profile (generated from injured males and non-pregnant females) may be protective during pregnancy. When this hypercoagulable profile was absent at admission, there was a high rate of obstetric complications, including a notable rate of fetal demise before gestational viability. Furthermore, a hypocoagulable α angle (low fibrinogen or fibrinogen dysfunction) on arrival rTEG was associated with increased pregnancy complications.
Hypercoagulable TEG profiles seen in pregnant females and non-pregnant females in the present study are consistent with sex-based differences observed in healthy volunteers.10 11 Francis et al 10 first demonstrated that healthy non-pregnant females had shorter reaction (r) times, indicating the time to the start of clot formation, and higher MA values, when compared with males. Gorton et al revealed that these sex-based differences in r-time and MA values were further augmented in healthy pregnant females when compared with non-pregnant females.11
The initial hypercoagulable TEG profile in pregnant and non-pregnant females observed in the present study parallels previous findings in the trauma population. Schreiber et al observed females had lower r-times than males in the first 24 hours after injury.16 Pommerening et al observed females had higher α angles and MA values than males in the first 24 hours after injury.17 However, they also noted males had a more significant rebound in their coagulation profile after 24 hours, quickly becoming more hypercoagulable than females. Subsequently, males in this multicenter study had higher VTE rates than females. Coleman et al also observed when treating sex as an experimental value that females had a more hypercoagulable profile, less clot formation prolongation, higher MA and angle and lower LY-30 than male counterparts. They also observed that no females died from hemorrhage associated with hyperfibrinolysis, unlike their male counterparts.18
The present study supports the premise that estrogen contributes to a hypercoagulable profile seen in pregnant and non-pregnant females, who demonstrated elevated MA values. The MA TEG value represents the strength of the clot and is driven primarily by platelet function. The presence of estrogen and androgen receptors and hormone-responsive enzymes reveal a sex hormone effect on platelets.28–30 Coleman et al showed that female platelets have increased aggregation and activation potential. Additionally, estradiol pretreatment feminizes male platelets.31 These hormonal effects may play a role in the performance of platelets in trauma-induced coagulopathy and may contribute to sex-specific outcomes in severe trauma.
Hypercoagulable profiles on arrival after trauma have been associated with an increased risk of VTE events. Brill et al21 performed a prospective study, which found that trauma patients who present with a hypercoagulable TEG had twice the rate of DVTs. Gary et al20 retrospectively reviewed patients with extremity trauma and hypercoagulable TEGs (MA ≥65); this patient population had a threefold increase risk for VTE events. Additionally, a recent meta-analysis from Harahsheh and Ho revealed that, in multiple clinical settings, hypercoagulability on TEG is associated with a 3.6 times higher odds of VTE development.32 In their study, sex was not evaluated in a subgroup analysis. Each of the aforementioned studies advocated for additional VTE prophylaxis for patients who arrive with a hypercoagulable TEG. Importantly, many prior works evaluating the relationship between abnormal rTEG on arrival and VTE development excluded pregnant females from their studies, highlighting the knowledge gap in this important patient population.17 18 As expected, the present study revealed that pregnant females presented with a more hypercoagulable TEG compared with non-pregnant females and males; however, it was not expected that pregnant patients suffered fewer VTE events. Elevations in estrogen have been linked to a hypercoagulable TEG profile and to increased rates of VTEs in uninjured individuals. This has been observed primarily in those who take hormonal contraception or hormone replacement therapy.33 In the setting of trauma, the balance between hemostasis and thrombosis may be further altered in both pregnant and non-pregnant females, resulting in lower overall mortality and, in the case of pregnancy, a lower incidence of VTE. Given that this may be a protective phenotype, this patient population may not benefit from more aggressive VTE prophylaxis, as suggested by the findings in prior studies.
Sharma et al and Della Rocca et al previously noted that pregnant females, especially those in later terms of pregnancy, had higher α angle and MA and lower fibrinolysis by TEG values.15 34 The current study found that low k-time, low α angle, and elevated fibrinolysis at admission were associated with increased mortality and pregnancy-related complications. These findings are not surprising given the contribution of fibrinogen concentration and fibrinogen function to these values, as well as the significance of each in maintaining pregnancy to term and without bleeding complications. Fibrinogen is essential to placental development and integrity during pregnancy and poor pregnancy-related outcomes are frequent in patients with hypofibrinogenemia and fibrinogen dysfunction.35 As such, what is hypercoagulable in the acutely injured males or non-pregnant females may be protective (by design) for the pregnant female patient and her fetus after injury.
There are limitations to our study. First, our study was a single-center retrospective review with a low sample size. This was primarily due to our unique patient population of interest—pregnant women involved in trauma. There were very few patients who met the inclusion criteria of our study, resulting in a small sample size. The present study may be underpowered to detect the infrequent complication of interest: DVT and PE. In addition, the true incidence of DVT and PE in our patient population is unknown, as no duplex surveillance imaging was performed. Therefore, our study should be considered hypothesis generating and should be confirmed with a larger sample size. Second, this patient population has been historically excluded from prospective studies and therefore serial blood samples are not available for assessment of time-related TEG changes after injury. Third, accurate data on pharmacologic contraception or menstruation status were not available and therefore were not accounted for. Finally, the patients in the present study presented with relatively low ISS and minimal transfusion requirements, which may make the findings difficult to extrapolate to trauma patients presenting in extremis.