Semin Thromb Hemost 2010; 36(7): 712-722
DOI: 10.1055/s-0030-1265288
© Thieme Medical Publishers

Critical Factors Contributing to the Thromboelastography Trace

Stephen G. MacDonald1 , Roger J. Luddington1
  • 1Haemostasis Unit, Haematology Department, Addenbrooke's Hospital, Cambridge, United Kingdom
Further Information

Publication History

Publication Date:
26 October 2010 (online)

ABSTRACT

The thromboelastography trace provides a graphical and numerical representation of the viscoelastic changes associated with fibrin polymerization. When used with whole blood, the shape of this trace is a composite of the effects of white and red cell content and composition, platelet number and function, fibrinogen concentration, as well as coagulation protein function and balance. The trace is also influenced by pharmacological agents such as anticoagulants, antiplatelet therapy, and coagulation factor supplementation. As such the main role of this technology has been as a point-of-care device to guide transfusion of blood components. Recently the technology has moved from the cardiac and hepatic surgical settings, where most of the early work was focused, into other areas of hemostatic monitoring. New applications for pharmaceutical monitoring and patient screening are being explored. This review gives a broad overview of the applications of the technology. In particular it considers the factors that most influence the characteristics of the trace, be they preanalytical, analytical, or clinical.

REFERENCES

  • 1 Hartert H. Blutgerinnungsstudien mit der Thrombelastographie, einem neuen Untersuchungsverfahren.  Klin Wochenschr. 1948;  26(37–38) 577-583
  • 2 Nielsen V G. A comparison of the Thrombelastograph and the ROTEM.  Blood Coagul Fibrinolysis. 2007;  18(3) 247-252
  • 3 Lang T, Bauters A, Braun S L et al.. Multi-centre investigation on reference ranges for ROTEM thromboelastometry.  Blood Coagul Fibrinolysis. 2005;  16(4) 301-310
  • 4 Spiezia L, Rada C, Marchioro P et al.. Peculiar whole blood rotational thromboelastometry (ROTEM) profile in 40 sideropenic anaemia patients.  Thromb Haemost. 2008;  100(6) 1106-1110
  • 5 Tripodi A, Cappellini M D, Chantarangkul V et al.. Hypercoagulability in splenectomized thalassemic patients detected by whole-blood thromboelastometry, but not by thrombin generation in platelet-poor plasma.  Haematologica. 2009;  94(11) 1520-1527
  • 6 Kashuk J L, Moore E E, Sabel A et al.. Rapid thrombelastography (r-TEG) identifies hypercoagulability and predicts thromboembolic events in surgical patients.  Surgery. 2009;  146(4) 764-772; discussion 772–774
  • 7 Zambruni A, Thalheimer U, Leandro G, Perry D, Burroughs A K. Thromboelastography with citrated blood: comparability with native blood, stability of citrate storage and effect of repeated sampling.  Blood Coagul Fibrinolysis. 2004;  15(1) 103-107
  • 8 Camenzind V, Bombeli T, Seifert B et al.. Citrate storage affects Thrombelastograph analysis.  Anesthesiology. 2000;  92(5) 1242-1249
  • 9 Bowbrick V A, Mikhailidis D P, Stansby G. The use of citrated whole blood in thromboelastography.  Anesth Analg. 2000;  90(5) 1086-1088
  • 10 Vig S, Chitolie A, Bevan D H, Halliday A, Dormandy J. Thromboelastography: a reliable test?.  Blood Coagul Fibrinolysis. 2001;  12(7) 555-561
  • 11 Johansson P I, Bochsen L, Andersen S, Viuff D. Investigation of the effect of kaolin and tissue-factor-activated citrated whole blood, on clot-forming variables, as evaluated by thromboelastography.  Transfusion. 2008;  48(11) 2377-2383
  • 12 Wasowicz M, Srinivas C, Meineri M, Banks B, McCluskey S A, Karkouti K. Technical report: analysis of citrated blood with thromboelastography: comparison with fresh blood samples.  Can J Anaesth. 2008;  55(5) 284-289
  • 13 Durila M, Kalincík T, Pacáková Z, Cvachovec K. Discard volume necessary for elimination of heparin flush effect on thromboelastography.  Blood Coagul Fibrinolysis. 2010;  21(2) 192-195
  • 14 Tomori T, Hupalo D, Teranishi K et al.. Evaluation of coagulation stages of hemorrhaged swine: comparison of thromboelastography and rotational elastometry.  Blood Coagul Fibrinolysis. 2010;  21(1) 20-27
  • 15 Scarpelini S, Rhind S G, Nascimento B et al.. Normal range values for thromboelastography in healthy adult volunteers.  Braz J Med Biol Res. 2009;  42(12) 1210-1217
  • 16 Edwards R M, Naik-Mathuria B J, Gay A N, Olutoye O O, Teruya J. Parameters of thromboelastography in healthy newborns.  Am J Clin Pathol. 2008;  130(1) 99-102
  • 17 Chan K L, Summerhayes R G, Ignjatovic V, Horton S B, Monagle P T. Reference values for kaolin-activated thromboelastography in healthy children.  Anesth Analg. 2007;  105(6) 1610-1613
  • 18 Cvirn G, Gallistl S, Kutschera J et al.. Clot strength: a comparison between cord and adult blood by means of thrombelastometry.  J Pediatr Hematol Oncol. 2008;  30(3) 210-213
  • 19 Haizinger B, Gombotz H, Rehak P, Geiselseder G, Mair R. Activated thrombelastogram in neonates and infants with complex congenital heart disease in comparison with healthy children.  Br J Anaesth. 2006;  97(4) 545-552
  • 20 Ramaker A J, Meyer P, van der Meer J et al.. Effects of acidosis, alkalosis, hyperthermia and hypothermia on haemostasis: results of point-of-care testing with the thromboelastography analyser.  Blood Coagul Fibrinolysis. 2009;  20(6) 436-439
  • 21 Rundgren M, Engström M. A thromboelastometric evaluation of the effects of hypothermia on the coagulation system.  Anesth Analg. 2008;  107(5) 1465-1468
  • 22 Dirkmann D, Hanke A A, Görlinger K, Peters J. Hypothermia and acidosis synergistically impair coagulation in human whole blood.  Anesth Analg. 2008;  106(6) 1627-1632
  • 23 Kitchen D P, Kitchen S, Jennings I, Woods T, Walker I. Quality assurance and quality control of thrombelastography and rotational thromboelastometry: the UK NEQAS for Blood Coagulation Experience.  Semin Thromb Hemost. 2010;  36(7) 757-763
  • 24 Kang Y G, Martin D J, Marquez J et al.. Intraoperative changes in blood coagulation and thrombelastographic monitoring in liver transplantation.  Anesth Analg. 1985;  64(9) 888-896
  • 25 Reyle-Hahn M, Rossaint R. Coagulation techniques are not important in directing blood product transfusion during liver transplantation.  Liver Transpl Surg. 1997;  3(6) 659-663; discussion 663–665
  • 26 Coakley M, Reddy K, Mackie I, Mallett S. Transfusion triggers in orthotopic liver transplantation: a comparison of the thromboelastometry analyzer, the thromboelastogram, and conventional coagulation tests.  J Cardiothorac Vasc Anesth. 2006;  20(4) 548-553
  • 27 Dunning J, Versteegh M, Fabbri A EACTS Audit and Guidelines Committee et al. Guideline on antiplatelet and anticoagulation management in cardiac surgery.  Eur J Cardiothorac Surg. 2008;  34(1) 73-92
  • 28 Shore-Lesserson L, Manspeizer H E, DePerio M, Francis S, Vela-Cantos F, Ergin M A. Thromboelastography-guided transfusion algorithm reduces transfusions in complex cardiac surgery.  Anesth Analg. 1999;  88(2) 312-319
  • 29 Royston D, von Kier S. Reduced haemostatic factor transfusion using heparinase-modified thrombelastography during cardiopulmonary bypass.  Br J Anaesth. 2001;  86(4) 575-578
  • 30 Mason P J, Jacobs A K, Freedman J E. Aspirin resistance and atherothrombotic disease.  J Am Coll Cardiol. 2005;  46(6) 986-993
  • 31 Pittens C A, Bouman H J, van Werkum J W, ten Berg J M, Hackeng C M. Comparison between hirudin and citrate in monitoring the inhibitory effects of P2Y12 receptor antagonists with different platelet function tests.  J Thromb Haemost. 2009;  7(11) 1929-1932
  • 32 Ingerslev J, Poulsen L H, Sørensen B. Potential role of the dynamic properties of whole blood coagulation in assessment of dosage requirements in haemophilia.  Haemophilia. 2003;  9(4) 348-352
  • 33 van Veen J J, Gatt A, Bowyer A E, Cooper P C, Kitchen S, Makris M. Calibrated automated thrombin generation and modified thromboelastometry in haemophilia A.  Thromb Res. 2009;  123(6) 895-901
  • 34 Bassus S, Wegert W, Krause M et al.. Platelet-dependent coagulation assays for factor VIII efficacy measurement after substitution therapy in patients with haemophilia A.  Platelets. 2006;  17(6) 378-384
  • 35 Pivalizza E G, Escobar M A. Thrombelastography-guided factor VIIa therapy in a surgical patient with severe hemophilia and factor VIII inhibitor.  Anesth Analg. 2008;  107(2) 398-401
  • 36 Young G, Blain R, Nakagawa P, Nugent D J. Individualization of bypassing agent treatment for haemophilic patients with inhibitors utilizing thromboelastography.  Haemophilia. 2006;  12(6) 598-604
  • 37 Young G, Ebbesen L S, Viuff D et al.. Evaluation of thromboelastography for monitoring recombinant activated factor VII ex vivo in haemophilia A and B patients with inhibitors: a multicentre trial.  Blood Coagul Fibrinolysis. 2008;  19(4) 276-282
  • 38 Dargaud Y, Lambert T, Trossaert M. New advances in the therapeutic and laboratory management of patients with haemophilia and inhibitors.  Haemophilia. 2008;  14(Suppl 4) 20-27
  • 39 Sørensen B, Ingerslev J. Tailoring haemostatic treatment to patient requirements—an update on monitoring haemostatic response using thrombelastography.  Haemophilia. 2005;  11(11, Suppl 1) 1-6
  • 40 Radtke K P, Griffin J H, Riceberg J, Gale A J. Disulfide bond-stabilized factor VIII has prolonged factor VIIIa activity and improved potency in whole blood clotting assays.  J Thromb Haemost. 2007;  5(1) 102-108
  • 41 Rahe-Meyer N, Pichlmaier M, Haverich A et al.. Bleeding management with fibrinogen concentrate targeting a high-normal plasma fibrinogen level: a pilot study.  Br J Anaesth. 2009;  102(6) 785-792
  • 42 Rahe-Meyer N, Solomon C, Winterhalter M et al.. Thromboelastometry-guided administration of fibrinogen concentrate for the treatment of excessive intraoperative bleeding in thoracoabdominal aortic aneurysm surgery.  J Thorac Cardiovasc Surg. 2009;  138(3) 694-702
  • 43 Lang T, Johanning K, Metzler H et al.. The effects of fibrinogen levels on thromboelastometric variables in the presence of thrombocytopenia.  Anesth Analg. 2009;  108(3) 751-758
  • 44 Zmuda K, Neofotistos D, Ts'ao C H. Effects of unfractionated heparin, low-molecular-weight heparin, and heparinoid on thromboelastographic assay of blood coagulation.  Am J Clin Pathol. 2000;  113(5) 725-731
  • 45 Murray D J, Brosnahan W J, Pennell B, Kapalanski D, Weiler J M, Olson J. Heparin detection by the activated coagulation time: a comparison of the sensitivity of coagulation tests and heparin assays.  J Cardiothorac Vasc Anesth. 1997;  11(1) 24-28
  • 46 Coppell J A, Thalheimer U, Zambruni A et al.. The effects of unfractionated heparin, low molecular weight heparin and danaparoid on the thromboelastogram (TEG): an in-vitro comparison of standard and heparinase-modified TEGs with conventional coagulation assays.  Blood Coagul Fibrinolysis. 2006;  17(2) 97-104
  • 47 Van P Y, Cho S D, Underwood S J, Morris M S, Watters J M, Schreiber M A. Thrombelastography versus AntiFactor Xa levels in the assessment of prophylactic-dose enoxaparin in critically ill patients.  J Trauma. 2009;  66(6) 1509-1515, discussion 1515–1517
  • 48 Engström M, Rundgren M, Schött U. An evaluation of monitoring possibilities of argatroban using rotational thromboelastometry and activated partial thromboplastin time.  Acta Anaesthesiol Scand. 2010;  54(1) 86-91
  • 49 Tanaka K A, Szlam F, Sun H Y, Taketomi T, Levy J H. Thrombin generation assay and viscoelastic coagulation monitors demonstrate differences in the mode of thrombin inhibition between unfractionated heparin and bivalirudin.  Anesth Analg. 2007;  105(4) 933-939
  • 50 Tripodi A, Chantarangkul V, Primignani M et al.. Point-of-care coagulation monitors calibrated for the international normalized ratio for cirrhosis (INRliver) can help to implement the INRliver for the calculation of the MELD score.  J Hepatol. 2009;  51(2) 288-295
  • 51 Cerutti E, Stratta C, Romagnoli R et al.. Thromboelastogram monitoring in the perioperative period of hepatectomy for adult living liver donation.  Liver Transpl. 2004;  10(2) 289-294
  • 52 Kapoor S, Pal S, Sahni P, Chattopadhyay T K. Thromboelastographic evaluation of coagulation in patients with extrahepatic portal vein thrombosis and non-cirrhotic portal fibrosis: a pilot study.  J Gastroenterol Hepatol. 2009;  24(6) 992-997
  • 53 Kang Y, Lewis J H, Navalgund A et al.. Epsilon-aminocaproic acid for treatment of fibrinolysis during liver transplantation.  Anesthesiology. 1987;  66(6) 766-773
  • 54 Steib A, Gengenwin N, Freys G, Boudjema K, Levy S, Otteni J C. Predictive factors of hyperfibrinolytic activity during liver transplantation in cirrhotic patients.  Br J Anaesth. 1994;  73(5) 645-648
  • 55 Tripodi A, Primignani M, Chantarangkul V et al.. The coagulopathy of cirrhosis assessed by thromboelastometry and its correlation with conventional coagulation parameters.  Thromb Res. 2009;  124(1) 132-136
  • 56 Harding S A, Mallett S V, Peachey T D, Cox D J. Use of heparinase modified thrombelastography in liver transplantation.  Br J Anaesth. 1997;  78(2) 175-179
  • 57 Spiess B D, Tuman K J, McCarthy R J, DeLaria G A, Schillo R, Ivankovich A D. Thromboelastography as an indicator of post-cardiopulmonary bypass coagulopathies.  J Clin Monit. 1987;  3(1) 25-30
  • 58 Nuttall G A, Oliver W C, Ereth M H, Santrach P J. Coagulation tests predict bleeding after cardiopulmonary bypass.  J Cardiothorac Vasc Anesth. 1997;  11(7) 815-823
  • 59 Dorman B H, Spinale F G, Bailey M K, Kratz J M, Roy R C. Identification of patients at risk for excessive blood loss during coronary artery bypass surgery: thromboelastography versus coagulation screen.  Anesth Analg. 1993;  76(4) 694-700
  • 60 Ti L K, Cheong K F, Chen F G. Prediction of excessive bleeding after coronary artery bypass graft surgery: the influence of timing and heparinase on thromboelastography.  J Cardiothorac Vasc Anesth. 2002;  16(5) 545-550
  • 61 Davidson S J, McGrowder D, Roughton M, Kelleher A A. Can ROTEM thromboelastometry predict postoperative bleeding after cardiac surgery?.  J Cardiothorac Vasc Anesth. 2008;  22(5) 655-661
  • 62 Dai Y, Lee A, Critchley L A, White P F. Does thromboelastography predict postoperative thromboembolic events? A systematic review of the literature.  Anesth Analg. 2009;  108(3) 734-742
  • 63 McCrath D J, Cerboni E, Frumento R J, Hirsh A L, Bennett-Guerrero E. Thromboelastography maximum amplitude predicts postoperative thrombotic complications including myocardial infarction.  Anesth Analg. 2005;  100(6) 1576-1583
  • 64 Burke III G W, Ciancio G, Figueiro J et al.. Hypercoagulable state associated with kidney-pancreas transplantation. Thromboelastogram-directed anti-coagulation and implications for future therapy.  Clin Transplant. 2004;  18(4) 423-428
  • 65 Holmes V A, Wallace J M. Haemostasis in normal pregnancy: a balancing act?.  Biochem Soc Trans. 2005;  33(Pt 2) 428-432
  • 66 Othman M, Falcon B, Kadir R. Global hemostasis in pregnancy: are we using thromboelastography to its full potential?.  Semin Thromb Hemost. 2010;  36(7) 738-746
  • 67 Gonzalez E, Pieracci F M, Moore E E, Kashuk J L. Coagulation abnormalities in the trauma patient: the role of point-of-care thromboelastography.  Semin Thromb Hemost. 2010;  36(7) 723-737
  • 68 Johansson P I, Stissing T, Bochsen L, Ostrowski S R. Thrombelastography and tromboelastometry in assessing coagulopathy in trauma.  Scand J Trauma Resusc Emerg Med. 2009;  17(1) 45
  • 69 Daudel F, Kessler U, Folly H, Lienert J S, Takala J, Jakob S M. Thromboelastometry for the assessment of coagulation abnormalities in early and established adult sepsis: a prospective cohort study.  Crit Care. 2009;  13(2) R42
  • 70 Lak M, Scharling B, Blemings A et al.. Evaluation of rFVIIa (NovoSeven) in Glanzmann patients with thromboelastogram.  Haemophilia. 2008;  14(1) 103-110

Roger LuddingtonM.Phil. Ph.D. 

Haemostasis Unit, Haematology Department, Addenbrooke's Hospital

Part of Cambridge University Hospitals NHS Foundation Trust, Cambridge, CB2 0QQ, United Kingdom

Email: Roger.luddington@addenbrookes.nhs.uk

    >