Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2

Abstract

Tissue inhibitor of metalloproteinases-3 (TIMP3) is one of four members of a family of proteins that were originally classified according to their ability to inhibit matrix metalloproteinases (MMP). TIMP3, which encodes a potent angiogenesis inhibitor, is mutated in Sorsby fundus dystrophy, a macular degenerative disease with submacular choroidal neovascularization. In this study we demonstrate the ability of TIMP3 to inhibit vascular endothelial factor (VEGF)–mediated angiogenesis and identify the potential mechanism by which this occurs: TIMP3 blocks the binding of VEGF to VEGF receptor-2 and inhibits downstream signaling and angiogenesis. This property seems to be independent of its MMP-inhibitory activity, indicating a new function for this molecule.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TIMP3 inhibits VEGF-mediated angiogenesis.
Figure 2: TIMP3 inhibits VEGF-mediated endothelial cell proliferation.
Figure 3: TIMP3 inhibits KDR-mediated signaling.
Figure 4: TIMP3 inhibits binding of VEGF to its receptor, KDR.
Figure 5: TIMP3 inhibits binding of VEGF to KDR but not to Flt-1.
Figure 6: TIMP3 interacts with KDR.

Similar content being viewed by others

References

  1. Fong, G.H., Rossant, J., Gertsenstein, M. & Breitman, M.L. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376, 66–70 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Shalaby, F. et al. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376, 62–66 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Shalaby, F. et al. A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis. Cell 89, 981–990 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Terman, B.I. et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem. Biophys. Res. Commun. 187, 1579–1586 (1992).

    Article  CAS  PubMed  Google Scholar 

  5. Millauer, B. et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846 (1993).

    Article  CAS  PubMed  Google Scholar 

  6. Quinn, T.P., Peters, K.G., De Vries, C., Ferrara, N. & Williams, L.T. Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. Proc. Natl. Acad. Sci. USA 90, 7533–7537 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Waltenberger, J., Claesson-Welsh, L., Siegbahn, A., Shibuya, M. & Heldin, C.H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 269, 26988–26995 (1994).

    CAS  PubMed  Google Scholar 

  8. de Vries, C. et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 255, 989–991 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Seetharam, L. et al. A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 10, 135–147 (1995).

    CAS  PubMed  Google Scholar 

  10. Pepper, M.S., Montesano, R., Mandriota, S.J., Orci, L. & Vassalli, J.-D. Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis. Enzyme Protein 49, 138–162 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Hiraoka, N., Allen, E., Apel, I.J., Gyetko, M.R. & Weiss, S.J. Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins. Cell 95, 365–377 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Stetler-Stevenson, W.G. The role of matrix metalloproteinases in tumor invasion, metastasis, and angiogenesis. Surg. Oncol. Clin. N. Am. 10, 383–392 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Werb, Z., Vu, T.H., Rinkenberger, J.L. & Coussens, L.M. Matrix-degrading proteases and angiogenesis during development and tumor formation. APMIS 107, 11–18 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Itoh, T. et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res 58, 1048–1051 (1998).

    CAS  PubMed  Google Scholar 

  15. Anand-Apte, B. et al. A review of tissue inhibitor of metalloproteinases-3 (TIMP-3) and experimental analysis of its effect on primary tumor growth. Biochem. Cell. Biol. 74, 853–862 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Anand-Apte, B. et al. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Invest. Ophthalmol. Vis. Sci. 38, 817–823 (1997).

    CAS  PubMed  Google Scholar 

  17. Apte, S.S., Mattei, M.-G. & Olsen, B.R. Cloning of the cDNA encoding human tissue inhibitor of metalloproteinase-3 (TIMP-3) and mapping of the TIMP-3 gene to chromosome 22. Genomics 19, 86–90 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Langton, K.P. et al. A novel tissue inhibitor of metalloproteinases-3 mutation reveals a common molecular phenotype in Sorsby's fundus dystrophy. J. Biol. Chem. 275, 27027–27031 (2000).

    CAS  PubMed  Google Scholar 

  19. Tabata, Y., Isashiki, Y., Kamimura, K., Nakao, K. & Ohba, N. A novel splice site mutation in the tissue inhibitor of the metalloproteinases-3 gene in Sorsby's fundus dystrophy with unusual clinical features. Hum. Genet. 103, 179–182 (1998).

    CAS  PubMed  Google Scholar 

  20. Weber, B.H., Vogt, G., Pruett, R.C., Stohr, H. & Felbor, U. Mutations in the tissue inhibitor of metalloproteinases-3 (TIMP3) in patients with Sorsby's fundus dystrophy. Nat. Genet. 8, 352–356 (1994).

    Article  CAS  PubMed  Google Scholar 

  21. Nguyen, M., Shing, Y. & Folkman, J. Quantitation of angiogenesis and anti-angiogenesis in the chick embryo chorioallantoic membrane. Microvasc. Res. 47, 31–40 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Spurbeck, W.W., Ng, C.Y., Strom, T.S., Vanin, E.F. & Davidoff, A.M. Enforced expression of tissue inhibitor of matrix metalloproteinase-3 affects functional capillary morphogenesis and inhibits tumor growth in a murine tumor model. Blood 100, 3361–3368 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Bond, M. et al. Localization of the death domain of tissue inhibitor of metalloproteinase-3 to the N terminus. Metalloproteinase inhibition is associated with proapoptotic activity. J. Biol. Chem. 275, 41358–41363 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Ahonen, M., Baker, A.H. & Kahari, V.M. Adenovirus-mediated gene delivery of tissue inhibitor of metalloproteinase-3 inhibits invasion and induces apoptosis in melanoma cells. Cancer Res. 58, 2310–2315 (1998).

    CAS  PubMed  Google Scholar 

  25. Baker, A.H., Zaltsman, A.B., George, S.J. & Newby, A.C. Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J. Clin. Invest. 101, 1478–1487 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baker, A.H., George, S.J., Zaltsman, A.B., Murphy, G. & Newby, A.C. Inhibition of invasion and induction of apoptotic cell death of cancer cell lines by overexpression of TIMP-3. Br. J. Cancer 79, 1347–1355 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Langton, K.P., Barker, M.D. & McKie, N. Localization of the functional domains of human tissue inhibitor of metalloproteinases-3 and the effects of a Sorsby's fundus dystrophy mutation. J. Biol. Chem. 273, 16778–16781 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Bergers, G. et al. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2, 737–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coussens, L.M., Tinkle, C.L., Hanahan, D. & Werb, Z. MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell 103, 481–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hoegy, S.E., Oh, H.R., Corcoran, M.L. & Stetler-Stevenson, W.G. Tissue inhibitor of metalloproteinases-2 (TIMP-2) suppresses TKR-growth factor signaling independent of metalloproteinase inhibition. J. Biol. Chem. 276, 3203–3214 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Fariss, R.N., Apte, S.S., Luthert, P.J., Bird, A.C. & Milam, A.H. Accumulation of tissue inhibitor of metalloproteinase-3 in human eyes with Sorsby's fundus dystrophy or retinitis pigmentosa. Br. J. Ophthalmol. 82, 1329–1334 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kamei, M. & Hollyfield, J. TIMP-3 in Bruch's membrane: changes during aging and in age-related macular degeneration. Invest. Ophthalmol. Vis. Sci. 40, 2367–2375 (1999).

    CAS  PubMed  Google Scholar 

  33. Della, N.G., Campochiaro, P.A. & Zack, D.J. Localization of TIMP-3 mRNA expression to the retinal pigment epithelium. Invest. Ophthalmol. Vis. Sci. 37, 1921–1924 (1996).

    CAS  PubMed  Google Scholar 

  34. Ruiz, A., Peterson, B. & Bok, D. Localization and quantification of TIMP-3 mRNA in the human retina. Invest. Ophthalmol. Vis. Sci. 37, S1143 (1996).

    Google Scholar 

  35. Blaauwgeers, H.G. et al. Polarized vascular endothelial growth factor secretion by human retinal pigment epithelium and localization of vascular endothelial growth factor receptors on the inner choriocapillaris. Evidence for a trophic paracrine relation. Am. J. Pathol. 155, 421–428 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bian, J. et al. Suppression of in vivo tumor growth and induction of suspension cell death by tissue inhibitor of metalloproteinases (TIMP)-3. Carcinogenesis 17, 1805–1811 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Ahonen, M. et al. Antitumor activity and bystander effect of adenovirally delivered tissue inhibitor of metalloproteinases-3. Mol. Ther. 5, 705–715 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Sun, Y. et al. Molecular cloning of mouse tissue inhibitor of metalloproteinases-3 and its promoter. Specific lack of expression in neoplastic JB6 cells may reflect altered gene methylation. J. Biol. Chem. 270, 19312–19319 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. McElligott, A.M., Baker, A.H. & McGlynn, H. Matrix metalloproteinase and tissue inhibitor of metalloproteinase regulation of the invasive potential of a metastatic renal cell line. Biochem. Soc. Trans. 25, 147S (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Airola, K. et al. Human TIMP-3 is expressed during fetal development, hair growth cycle, and cancer progression. J. Histochem. Cytochem. 46, 437–447 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Byrne, J.A. et al. The tissue inhibitor of metalloproteinases-3 gene in breast carcinoma: identification of multiple polyadenylation sites and a stromal pattern of expression. Mol. Med. 1, 418–427 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Powe, D.G. et al. TIMP-3 mRNA expression is regionally increased in moderately and poorly differentiated colorectal adenocarcinoma. Br. J. Cancer 75, 1678–1683 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zeng, Z., Sun, Y., Shu, W. & Guillem, J.G. Tissue inhibitor of metalloproteinase-3 is a basement membrane-associated protein that is significantly decreased in human colorectal cancer. Dis. Colon Rectum 44, 1290–1296 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Uria, J.A., Ferrando, A.A., Velasco, G., Freije, J.M. & Lopez-Otin, C. Structure and expression in breast tumors of human TIMP-3, a new member of the metalloproteinase inhibitor family. Cancer Res. 54, 2091–2094 (1994).

    CAS  PubMed  Google Scholar 

  45. Murphy, G. & Willenbrock, F. Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol. 248, 496–510 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Pavloff, N., Staskus, P.W., Kishnani, N.S. & Hawkes, S.P. A new inhibitor of metalloproteinases from chicken: ChIMP-3. A third member of the TIMP family. J. Biol. Chem. 267, 17321–17326 (1992).

    CAS  PubMed  Google Scholar 

  47. Nguyen, M., Shing, Y. & Folkman, J. Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc. Res. 47, 31–40 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant 1 R29 EY12109-01 from the National Institutes of Health, module grant (Foundation Fighting Blindness) and seed grant (Cleveland Clinic Foundation), all to B.A.-A. We thank J. Lang for photography, T. Burke (CCF) for instruction in protein radiolabeling, P. DiCorleto for discussions and P. Salvado for advice on graphics. We sincerely apologize to colleagues whose work was not cited because of space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bela Anand-Apte.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, J., Ebrahem, Q., Moore, N. et al. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9, 407–415 (2003). https://doi.org/10.1038/nm846

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm846

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing