Impact of acute care surgery model in aspects of patients with upper gastrointestinal hemorrhage: result from a single tertiary care center in Thailand

Sirasit Laohathai, Jittima Jaroensuk, Sira Laohathai, Wasin Laohavinij

ABSTRACT

Background Even though an acute care surgery (ACS) model has been implemented worldwide, there are still relatively few studies on its efficacy in developing countries, which often have limited capacity and resources. To evaluate ACS efficacy in developing country, we compared mortality rates and intervention timeliness at a tertiary care center in Thailand among patients with an upper gastrointestinal hemorrhage (UGIH).

Methods This retrospective study compared two 24-month periods between pre-ACS and post-ACS implementations from July 1, 2014, to June 30, 2018. Medical records from consecutive patients with UGH in the surgical department of Chonburi Hospital, Thailand, were reviewed. The primary outcome was UGH mortality rate differences between pre-ACS and post-ACS implementations. Differences in complications rate, length of hospital stay (LOS), time to esophagogastroduodenoscopy (EGD) and proportion of patients undergoing esophagogastroduodenoscopy (%EGD) in the same admission were also analyzed using unpaired t-test and Fisher’s exact test. Baseline characteristic differences between the pre-ACS and post-ACS periods were controlled for in multiple linear and logistic regression models.

Results A total of 421 patients were included (162 pre-ACS and 259 post-ACS). Results showed a mortality rate of 24% in post-ACS compared with 41% in pre-ACS period (p<0.001). Overall complications (38% vs 27%), LOS (6.4 days vs 5.6 days) and time to EGD (44 hours vs 25 hours) were also significantly reduced, whereas %EGD increased (70% vs 89%). After adjusting for covariates, patients in the post-ACS period had lower risk of death (OR 0.54, p=0.040), lower risk of developing respiratory complications (OR 0.52, p=0.036), higher chance of receiving EGD in the same admission (OR 2.94, p<0.001) and shortened time to EGD for 19 hours (p<0.001).

Discussion Our results provide evidence that ACS can be implemented to improve patient outcomes at medical centers in developing countries with limited resources.

Level of evidence Therapeutic/care management, level IV.

INTRODUCTION

The acute care surgery (ACS) model, which consisted of trauma, surgical critical care and emergency general surgery (EGS), was developed to solve the crisis of insufficient trauma surgeons due to an increased trend of surgeons specializing in the subspecialties. The main objective of the ACS model was to promptly treat patients by having specific surgical teams on standby during daytime without prior scheduled services. Additionally, during after hours, most institutions also provide in-house resident coverage and attending on-call service. However, there are some key differences among ACS models around the world. More structural ACS services have been established in North America, Europe and Australasia, including independent subunits and acute care wards, whereas in low-income countries like Africa, comprehensive ACS models have not yet been implemented. Furthermore, service coverage differs between countries. In the USA, ACS models operated by trauma surgeons cover both trauma and EGS cases, whereas in Canada, Europe, and Australasia, EGS services are provided only by general surgeons.

During the past decade, ACS has been proven worldwide to bring multiple benefits, including an increase in work relative value units, without impacting elective operation, decreases in overall mortality, time to surgical evaluation, time to operation, complication rate, length of hospital stay (LOS) and hospital costs. In Thailand, ACS models were recently implemented in selected medical centers, including Chonburi Hospital, the largest tertiary medical center in the eastern part of Thailand, which established its ACS on July 1, 2016. The Chonburi ACS team consists of surgeons, residents and interns who exclusively manage only EGS patients including timely consultations and inpatient services. Furthermore, 24/7 in-house resident and intern coverage is also provided. Currently, there are limited studies about the efficacy of ACS in middle-income country like Thailand. Therefore, this study was conducted by choosing one of the most common diseases treated by ACS, upper gastrointestinal hemorrhage (UGIH), to test the hypothesis that the ACS model would bring benefits to surgical quality of care by decreasing mortality rate and improving intervention timeliness compared with the previous general operation service model.

METHODS

Background of Chonburi Hospital Surgery Unit

Prior to ACS, the Chonburi Hospital Surgery Unit consisted of a general operation and trauma team. The general operation team was responsible for scheduled operations, as well as outpatient and emergency surgery.
inpatient services in which EGS consultation was the responsibility of surgeons who were assigned to outpatient services or minor operations. After the ACS model was introduced, the ACS team began to exclusively manage EGS patients, including ensuring delivery of timely consultations and inpatient services. The ACS team consisted of residents and interns in house 24-hour standby without any scheduled services during office hours and general surgeons on in-house standby during office hours and on-call during after-hours.

Patients with UGIH were treated by both surgeons and gastroenterologists, depending on the patients’ condition. When patients with UGIH arrived at the hospital, emergency physicians performed initial resuscitation and assessment. If patients had unstable vital signs or were suspected of clinically active bleeding, surgeons would be consulted for emergency surgical interventions, including EGD, surgical exploration or Sengstaken-Blakemore tube insertion. Patients who were stable and without any signs of clinically active bleeding would be admitted to the internal medicine department to be scheduled later for an elective EGD by gastroenterologists. Due to limited resources and manpower, after-hours EGD is not provided and Sengstaken-Blakemore tube insertion or emergency exploration is performed for these patients when needed.

Study design and setting
A retrospective cohort study was conducted using data from the inpatient International Classification of Diseases, 10th Revision, database of all consecutive patients with UGIH admitted in the surgical department of Chonburi Hospital, Thailand, from July 1, 2014, to June 30, 2018. This period included 2 years each during the pre-ACS and post-ACS implementation period. The ACS starting date was July 1, 2016. Patients excluded from the analysis were those who developed UGIH during admission, had an underlying disease of cancer, referred out before treatment completion or refused to complete the treatment, had incomplete initial vital signs or laboratory results at the emergency room, or already had prior treatment from other departments or hospitals before admission into the surgical unit.

Information on patients’ baseline characteristics and initial management was collected, including age, gender, comorbidities (ie, chronic kidney disease, preadmission hepatic failure, cirrhosis, hepatitis, hypertension, diabetes, dyslipidemia, stroke, myocardial infarction, heart failure, hypertensive heart diseases and heart conductive disorders), principal and related diagnoses, myocardial infarction, heart failure, hypertensive heart diseases and heart conductive disorders), principal and related diagnoses, laboratory results from the emergency room; and 38 patients already had prior treatment from other departments or hospitals before admitted into the surgical unit. A total of 421 patients, 162 in the pre-ACS period and 259 in post-ACS period, were included in the study (figure 1).

Table 1 displays differences between the pre-ACS and post-ACS patient study populations. Patients in the post-ACS group were slightly older (51 in pre-ACS vs 53 in post-ACS, p=0.031) and less likely to be male (81% vs 72%, p=0.048). The post-ACS group had a higher percentage of hemodynamic stable patients compared with the pre-ACS patients (18% vs 34%, p<0.001). Laboratory results from the emergency room also showed that the pre-ACS group had lower hemoglobin levels (6.6 vs 7.7, p<0.001) and hematocrit (19.7 vs 22.8, p<0.001). Furthermore, they also had significantly higher prothrombin time, partial thromboplastin time and international normalized ratio (INR) compared with the post-ACS group. No statistical differences were found with patients’ comorbidities, whereas the majority of the patients in both groups were diagnosed with cirrhosis (78% vs 71%, p=0.114). Pre-endoscopic Rockall Scores were slightly higher in the pre-ACS period (3.7 vs 3.4, p=0.030). The proportion of non-variceal UGIH was lower in the pre-ACS group (33% vs 53%), whereas the proportion of variceal UGIH were similar in both group (35% vs 32%). The cause of UGIH could not be identified in 33% and 15% of pre-ACS and post-ACS patients, respectively, because patients either died before EGD, did not undergo EGD in the same admission, or massive bleeding prevented the identification of the cause.

The crude mortality rate was significantly lower in the post-ACS period (41% vs 24%, p<0.001) (table 2). Furthermore, after categorizing patients based on their Pre-endoscopic Rockall Score and initial hemodynamic status at the emergency room, the post-ACS group had a lower mortality rate compared with the pre-ACS group with a Pre-endoscopic Rockall Score of 4 (p<0.001) but had no statistical differences in other score groups (figure 2). In addition, patients with tachycardia (hypovolemic shock stage 2) or hypotension (hypovolemic shock stages 3 and 4) had a lower mortality rate in post-ACS compared with pre-ACS period (40% vs 20%, p=0.011, and 50% vs 30%,
In the post-ACS group (table 2). After subgrouping patients based on their hemodynamic status, only patients with tachycardia had statistically lower respiratory complications (30\% vs 12\%, \(p=0.012 \)) and pneumonia (11\% vs 2\%, \(p=0.034 \)) in the post-ACS period, whereas there were no differences in the complications rate between the pre-ACS and post-ACS periods among stable and hypotensive patients (table 3).

Measures of health use (LOS) and intervention timeliness (time to EGD) showed significant decreases from 6.4 to 5.6 days (\(p=0.033 \)) and 44 to 25 hours (\(p<0.001 \)), respectively (table 2). In addition, the proportion of patients who underwent EGD in the same admission (%EGD) rose from 70\% during the pre-ACS period to 89\% after ACS implementation (\(p<0.001 \)). After subgrouping patients based on their hemodynamic status, patients with tachycardia and hypotension had higher %EGD (71\% vs 91\%, \(p=0.002 \), and 64\% vs 84\%, \(p=0.005 \), respectively) and shortened time to EGD (45 hours vs 27 hours, \(p=0.002 \), and 47 hours vs 26 hours, \(p=0.010 \), respectively) in post-ACS period, but there were no differences in both outcomes for hemodynamic stable patients (table 3).

Figure 2 UGIH mortality rate stratified by Pre-endoscopic Rockall Score mortality rate difference between pre-ACS and post-ACS periods in each score group was tested for significance using Fisher’s exact test.

*No patients in the pre-ACS group had Pre-endoscopic Rockall Score of 7.

ACS, acute care surgery; %EGD, proportion of patients undergoing esophagogastroduodenoscopy; EGD, esophagogastroduodenoscopy; LOS, length of hospital stay.

Table 1 Demographic and clinical characteristics of pre-ACS and post-ACS patients with UGIH

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Pre-ACS (n=162)</th>
<th>Post-ACS (n=259)</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>51 (49 to 53)</td>
<td>53 (52 to 55)</td>
<td>0.031*</td>
</tr>
<tr>
<td>Male</td>
<td>131 (81)</td>
<td>187 (72)</td>
<td>0.048†</td>
</tr>
<tr>
<td>Initial vital signs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP (100 to 110)</td>
<td>105 (100 to 110)</td>
<td>111 (107 to 114)</td>
<td>0.038*</td>
</tr>
<tr>
<td>Diastolic blood pressure (58 to 64)</td>
<td>61 (58 to 64)</td>
<td>69 (66 to 71)</td>
<td><0.001*</td>
</tr>
<tr>
<td>HR (97 to 106)</td>
<td>101 (97 to 106)</td>
<td>99 (96 to 102)</td>
<td>0.378*</td>
</tr>
<tr>
<td>Hemodynamic status</td>
<td></td>
<td></td>
<td>0.001†</td>
</tr>
<tr>
<td>Stable (HR<100 and SBP<110)</td>
<td>29 (18)</td>
<td>87 (34)</td>
<td></td>
</tr>
<tr>
<td>Tachycardia (HR>100)</td>
<td>63 (39)</td>
<td>89 (34)</td>
<td></td>
</tr>
<tr>
<td>Hypotension (SBP<100)</td>
<td>70 (43)</td>
<td>83 (32)</td>
<td></td>
</tr>
<tr>
<td>Laboratory results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemoglobin (6.2 to 7.0)</td>
<td>6.6 (6.2 to 7.0)</td>
<td>7.7 (7.3 to 8.0)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Hematocrit (18.7 to 20.7)</td>
<td>19.7 (18.7 to 20.7)</td>
<td>22.8 (21.9 to 23.7)</td>
<td><0.001*</td>
</tr>
<tr>
<td>Platelet (117 to 142(×10^9))</td>
<td>129 (117 to 142(×10^9))</td>
<td>133 (123 to 143(×10^9))</td>
<td>0.702*</td>
</tr>
<tr>
<td>PT (23.6 to 33.2)</td>
<td>28.4 (23.6 to 33.2)</td>
<td>19.9 (18.3 to 21.6)</td>
<td><0.001*</td>
</tr>
<tr>
<td>PTT (41.2 to 58.1)</td>
<td>49.6 (41.2 to 58.1)</td>
<td>36.1 (32.6 to 39.7)</td>
<td>0.001*</td>
</tr>
<tr>
<td>INR (2.0 to 3.0)</td>
<td>2.5 (2.0 to 3.0)</td>
<td>1.7 (1.6 to 1.9)</td>
<td><0.001*</td>
</tr>
<tr>
<td>BUN (25.1 to 31.0)</td>
<td>28.1 (25.1 to 31.0)</td>
<td>32.1 (29.1 to 35.1)</td>
<td>0.078*</td>
</tr>
<tr>
<td>Creatinine (1.3 to 1.7)</td>
<td>1.5 (1.3 to 1.7)</td>
<td>1.4 (1.2 to 1.6)</td>
<td>0.733*</td>
</tr>
<tr>
<td>eGFR (70.9 to 84.8)</td>
<td>77.9 (70.9 to 84.8)</td>
<td>84.9 (78.9 to 90.9)</td>
<td>0.140*</td>
</tr>
<tr>
<td>Comorbidities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chronic kidney disease (preadmission)</td>
<td>61 (38)</td>
<td>86 (33)</td>
<td>0.401†</td>
</tr>
<tr>
<td>Hepatic failure (preadmission)</td>
<td>5 (3)</td>
<td>4 (2)</td>
<td>0.315†</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>126 (78)</td>
<td>183 (71)</td>
<td>0.114†</td>
</tr>
<tr>
<td>Hepatitis</td>
<td>21 (13)</td>
<td>45 (17)</td>
<td>0.271†</td>
</tr>
<tr>
<td>Hypertension</td>
<td>23 (14)</td>
<td>55 (21)</td>
<td>0.073†</td>
</tr>
<tr>
<td>Diabetes</td>
<td>20 (12)</td>
<td>49 (19)</td>
<td>0.080†</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>2 (1)</td>
<td>10 (4)</td>
<td>0.141†</td>
</tr>
<tr>
<td>Stroke</td>
<td>2 (1)</td>
<td>8 (3)</td>
<td>0.329†</td>
</tr>
<tr>
<td>Cardiovascular comorbidities‡</td>
<td>5 (3)</td>
<td>7 (3)</td>
<td>>0.999†</td>
</tr>
<tr>
<td>Pre-endoscopic Rockall Score</td>
<td>3.7 (3.5 to 3.9)</td>
<td>3.4 (3.3 to 3.6)</td>
<td>0.030*</td>
</tr>
</tbody>
</table>

*Unpaired t-test. †Fisher’s exact test. ‡Cardiovascular comorbidities included myocardial infarction, heart failure, hypertensive heart diseases and heart conductive disorders.

ACS, acute care surgery; BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; HR, heart rate; INR, international normalized ratio; PT, prothrombin time; PTT, partial thromboplastin time; SBP, systolic blood pressure; UGIH, upper gastrointestinal hemorrhage.

In terms of complications, overall complications (38\% vs 27\%, \(p=0.018 \)), respiratory complications (23\% vs 12\%, \(p=0.004 \)), pneumonia (6\% vs 2\%, \(p=0.030 \)) and respiratory failure (20\% vs 12\%, \(p=0.017 \)) results showed significantly lower prevalence in the post-ACS group (table 2). After subgrouping patients based on their hemodynamic status, only patients with tachycardia had statistically lower respiratory complications (30\% vs 12\%, \(p=0.012 \)) and pneumonia (11\% vs 2\%, \(p=0.034 \)) in the post-ACS period, whereas there were no differences in the complications rate between the pre-ACS and post-ACS periods among stable and hypotensive patients (table 3).

Measures of health use (LOS) and intervention timeliness (time to EGD) showed significant decreases from 6.4 to 5.6 days (\(p=0.033 \)) and 44 to 25 hours (\(p<0.001 \)), respectively (table 2). In addition, the proportion of patients who underwent EGD in the same admission (%EGD) rose from 70\% during the pre-ACS period to 89\% after ACS implementation (\(p<0.001 \)). After subgrouping patients based on their hemodynamic status, patients with tachycardia and hypotension had higher %EGD (71\% vs 91\%, \(p=0.002 \), and 64\% vs 84\%, \(p=0.005 \), respectively) and shortened time to EGD (45 hours vs 27 hours, \(p=0.002 \), and 47 hours vs 26 hours, \(p=0.010 \), respectively) in post-ACS period, but there were no differences in both outcomes for hemodynamic stable patients (table 3).
Due to differences in baseline characteristic between pre-ACS and post-ACS populations, we ran multiple logistic and linear regression models that controlled for age, gender, hemodynamic status, hemoglobin level, platelet, INR and comorbidities as covariates. Some covariates were omitted due to problems with multicollinearity or a low number of occurrences in the sample. After adjusting for covariates, patients in the post-ACS period had lower risk of death (OR 0.54, 95% CI 0.30 to 0.97; p<0.001) and shortened time to EGD (mean reduction 19 hours, 95% CI 0.27 to −10; p<0.001). Moreover, patients in the post-ACS period also had a higher chance of receiving EGD in the same admission (OR 2.94, 95% CI 1.67 to 5.19; p<0.001) (Table 4).

Outcome analysis for patients who underwent Sengstaken-Blakemore tube insertion or emergency exploration could not be performed because there were no significant differences in baseline characteristics. Some patients died during hospitalization. Their diagnoses were esophageal varices and peptic ulcer, respectively.

DISCUSSION

The introduction of the ACS model at Chonburi Hospital has resulted in rapid assessment and treatment of patients and produced better outcomes, such as a decrease in mortality, complications and time to surgical intervention, which in this study was EGD, as selected in previous studies.1 4 8–10 When performing subgroup analysis controlling for the initial hemodynamic status, there was an increase in %EGD and a decrease in time to EGD for patients with tachycardia and hypotension during the post-ACS period, which resulted in reduced mortality for these two time-sensitive groups. This result highlighted the benefits of prompt attention to patients with UGIH by the ACS team. The delay in assessment due to busy routine work schedules can often worsen patient outcomes. Multiple studies have shown that the ACS model, given proper human resources, can improve patient outcomes.

Table 3 Primary and secondary outcomes between pre-ACS and post-ACS periods by hemodynamic status

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Stable</th>
<th>Unadjusted OR (95% CI)</th>
<th>P value</th>
<th>Adjusted OR (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality rate*</td>
<td>0.64 (0.30 to 0.70)</td>
<td><0.001</td>
<td>0.54 (0.30 to 0.97)</td>
<td>0.040</td>
<td></td>
</tr>
<tr>
<td>Overall complications*</td>
<td>0.60 (0.39 to 0.91)</td>
<td>0.016</td>
<td>0.72 (0.43 to 1.21)</td>
<td>0.215</td>
<td></td>
</tr>
<tr>
<td>Respiratory complications*</td>
<td>0.46 (0.27 to 0.77)</td>
<td>0.003</td>
<td>0.52 (0.29 to 0.96)</td>
<td>0.036</td>
<td></td>
</tr>
<tr>
<td>Pneumonia*</td>
<td>0.30 (0.10 to 0.89)</td>
<td>0.030</td>
<td>0.29 (0.07 to 1.4)</td>
<td>0.076</td>
<td></td>
</tr>
<tr>
<td>Respiratory failure*</td>
<td>0.51 (0.30 to 0.88)</td>
<td>0.015</td>
<td>0.63 (0.34 to 1.16)</td>
<td>0.138</td>
<td></td>
</tr>
<tr>
<td>%EGD*</td>
<td>3.44 (2.06 to 5.74)</td>
<td><0.001</td>
<td>2.94 (1.67 to 5.19)</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

Table 4 Unadjusted and adjusted effect of ACS compared between post-ACS and pre-ACS periods on significant outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Unadjusted Mean difference (95% CI)</th>
<th>P value</th>
<th>Adjusted Mean difference (95% CI)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS (days)†</td>
<td>−0.8 (−1.6 to −0.1)</td>
<td>0.033</td>
<td>−0.4 (−1.2 to 0.3)</td>
<td>0.272</td>
</tr>
<tr>
<td>Time to EGD (hours)†</td>
<td>−19 (−27 to −11)</td>
<td><0.001</td>
<td>−19 (−27 to −10)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Adjusted for age, gender, hemodynamic status, hemoglobin, platelet, international normalized ratio and all comorbidities.

*Multiple logistic regression.
†Multiple linear regression.

%EGD, proportion of patients undergoing esophagogastroduodenoscopy; EGD, esophagogastroduodenoscopy; LOS, length of hospital stay.
resource allocation to staff work schedules, can improve the
efficiency of the surgical team by increasing total case volume
for ACS without interrupting scheduled elective operations and
improving management of operating room resources.2 3 13

After implementation of the ACS model at Chonburi Hospital,
multiple quality indicators measuring health use and interven-
tion timeliness improved, such as an increase in the proportion
of patients who underwent EGD and reduced time from admis-
sion to EGD. However, there was no improvement in LOS in
our study. One possible explanation is that Chonburi Hospital
patients with variceal bleeding, which was approximately one-
third of total patients with UGIH in both time periods, under-
went a 5-day somatostatin-analogue protocol, regardless of their
disease severity.

The limitation of this study was the differences in baseline
characteristics between pre-ACS and post-ACS periods. The pre-
ACS period had a higher proportion of hypotensive patients,
lower hemoglobin level and worse coagulopathy, which can be
implied as higher severity of UGIH. Furthermore, we also saw
the difference in the cause of bleeding distribution between these
two groups, in which the pre-ACS period had a lower propor-
tion of non-variceal bleeding patients. A possible explanation
for the differences seen in the baseline characteristics was that
after introduction of the ACS model, there was an increase in
ACS team consultation to evaluate patients whom ER physicians
suspected as having active hemorrhage, even though their hemo-
dynamic status was still stable, instead of putting the patients in
observation or admission to the internal medicine department.
Although the analysis was adjusted for all identified covari-
ates, other unidentified differences may still affect the results.
Another limitation was a large proportion of patients who did
not undergo a diagnostic EGD in both periods; therefore, the
cause of bleeding could not be integrated into the analysis, which
could significantly change the outcome of the study since this
group of patients had a wide range of UGIH severity varying
from very mild to mortality before EGD.

CONCLUSION
The ACS model at Chonburi Hospital brought an improve-
ment to many aspects of patient outcomes, despite the hospi-
tal’s limited resources both in terms of human capital and
equipment. Therefore, the ACS model should be considered
for adoption by other medical centers, both in Thailand and
in other low-income countries which have a setting similar to
that of Chonburi Hospital, to improve the quality of care for
its patients.

Contributors Conception and design of study, revision of the article critically
for important intellectual content and approval of the version of the article to be
published: Sirat. (first author), JJ, Sirat and WL; acquisition of data: Sirat; analysis
and/or interpretation of data and drafting of the article: Sirat. and WL.

Funding The authors have not declared a specific grant for this research from any
funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval This study was approved by the ethical review committee for
human research of Chonburi Hospital (IRB number 792019). Patient consent
was not obtained due to the type of study design, with data extracted and patient
identification information kept anonymous.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request.

Open access This is an open access article distributed in accordance with the
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially,
and license their derivative works on different terms, provided the original work is
properly cited, appropriate credit is given, any changes made indicated, and the use
is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

REFERENCES
1 Diaz JJ, Norris PR, Gunter OL, Collier BR, Riorand WP, Morris JA. Does regionalization
2 Miller PR, Wildman EA, Chang MC, Meredith JW. Acute care surgery: impact on
discussion 6-8.
3 van der Wee MJL, van der Wilden G, Hoencamp R. Acute care surgery models
4 Page DE, Dooremyleah D, Thruchelvam D. Acute surgical unit: the Australasian
5 Barnes SL, Cooper CJ, Coughenour JP, Mackntyre AD, Kessel JW. Impact of acute care
6 Ball CG, MacLean AR, Dixon E, Quan ML, Nicholson L, Kirkpatrick AW, Sutherland FR.
Acute care surgery: the impact of an acute care surgery service on assessment, flow,
7 Cubas RF, Gomez NR, Rodriguez S, Wains M, Sivanandam A, Garberoglio CA.
Outcomes in the management of appendicitis and cholecystitis in the setting of a
8 Faryniuk AM, Hochman DJ. Effect of an acute surgical service on the timeliness of
9 Lim DW, Ozegovic D, Khadaroo RG, Widder S. Impact of an acute care surgery model
with a dedicated daytime operating room on outcomes and timeliness of care in
10 O’Mara MS, Scherer L, Wisner D, Owens LJ. Sustainability and success of the acute
11 Rockall TA, Logan R, Devlin HB, Northfield TC. Risk assessment after acute upper
12 To KB, Kamdar NS, Patil P, Collins SD, Seese E, Krapohl GL, Campbell DS, Englesbe
13 Ball CG, Hameed SM, Brenneman FD. Acute care surgery: a new strategy for the