Discussion
We gathered significant amounts of end-user feedback on the 2011 FTG. The feedback was primarily from providers who work in the prehospital setting and use the guidelines regularly. All steps of the current guideline were used in local protocols, although to varying degrees. While the rate of use was high (≥89%) for all steps, it certainly was not 100%. State and local EMS Medical Program Directors may make modifications to the guideline for local implementation. This is consistent with previous studies which have described variability in adoptions of the guidelines. Barnett et al found the most consistent use of the FTG was the physiological criteria while anatomic criteria were not as consistent.3 Our results were slightly different demonstrating more use of the anatomic and mechanistic criteria in local protocol than the physiological criteria. When examining state adoption of the FTG 4 years after a major revision, only 17% had fully adopted all criteria.4 Our study was conducted 8 years after the publication of the 2011 guidelines and is consistent with other studies demonstrating that increased time between survey and introduction will reflect a higher rate of implementation.5
An interesting finding was that the step 1 criteria were more likely to be integrated into air-medical protocols than ground services protocols. While the exact reasons for this could not be determined, it is plausible that these providers used the physiological data more often for triage due to inability to assess the severity of the mechanism. Often air-medical teams will rendezvous with ground services who will have the patient already in the ambulance and thus the air medical crews may not see the scene of the injury.
The concept of EMS provider judgment was added to the FTG in the 2006 revision and retained in the 2011 revision, however the parameters to guide decisions made by EMS outside of the algorithm were not described.2 Sixty-two per cent of our respondents stated that their judgment overrode the FTG criteria <20% of the time. This is contrary to prior research showing that judgment was the most commonly used criterion when EMS providers were asked immediately after transporting a patient.6 Studies regarding the utility of EMS judgment are mixed. Some studies have shown that EMS judgment adds to the sensitivity of triage,6–8 while others show no benefit.9 10 Regardless of the accuracy, research shows that the ‘gut feeling’ of the provider is the primary reason for identifying a major trauma victim requiring trauma center triage.11 Further revisions of the FTGs need to continue to recognize EMS judgment as an important part of the triage process and efforts should be made to help further develop the factors to be considered which may prompt a provider to transport a patient to a trauma center even when they fail to meet other criteria.
Our results show that as driving distance to a trauma center increases, the patient was less likely to be taken to a trauma center. This is despite data showing that major trauma patient transport directly to a trauma center improves survival.12 There are likely multiple system issues effecting the transport decision. For example, many rural counties have a very limited number of ambulances and cannot allow for an extended transport time to a trauma center at the cost of leaving an area without any EMS support. In these circumstances, an ambulance will often take a major trauma victim to the closest hospital, which is often not a trauma center. These results are not unique. Newgard et al found that while the identification of high-risk patients did not differ between urban and rural environments, the transport decisions varied widely.13 14 Any revision of the FTG must account for trauma center availability and geographical restraints within a system.
Mechanistic criteria are important in the current FTG. However, in the current design of the algorithm, the mechanism is not meant to be considered until after the physiological and anatomic criteria. Thus, if the FTG are used in the correct sequence steps 1 and 2 should drive the majority of triage decisions to a trauma center. However, this is not consistent with our findings of how the FTG are used in the field. Providers consistently ranked step 3 (mechanism) as the primary step driving most of the decisions to take a patient to a trauma center. These findings are consistent with a cognitive reasoning model described.11 The mechanism criteria are often examined first based on dispatch information and visual cues on scene arrival. This finding was reinforced by one of the comments on the tool. The provider stated, “I see the scene before I see the patient.” The current stepwise approach of the algorithm is more consistent with the evaluation of the patient in the hospital where vital signs are obtained first as part of the primary survey and are not consistent with the flow of information in the prehospital environment.
There are a number of important limitations to the data presented. Based on our strategy to ensure wide distribution of the tool, we cannot determine the response rate as we do not know the denominator of the number of individuals that received the tool. We also cannot assess the demographics of those who did not submit responses. Furthermore, while the tool was piloted with EMS providers to ensure clarity, it is possible the questions were interpreted differently among respondents. With the large response, we hope that the EMS community was appropriately represented but there is the possibility of sampling error.
In conclusion, the current FTG are widely used across EMS agencies. Each step is well represented in local protocols. However, step 3, not step 1, drove the majority of the decisions to triage a patient to the trauma center likely secondary to the flow of information prehospital professionals receive in the field. Proximity to a trauma center also played a role in how trauma patients were triaged. FTG should be adjusted for field workflow and be adaptable based on specific local system requirements. Overall, end-user input is essential for future guideline revisions.