Introduction
Nearly one-third of all deaths worldwide occur due to conditions potentially treated with surgical care.1 Many surgical systems across resource settings lack the necessary tools, including those required to advance human resources through continuous education, to achieve the best outcomes.2 The Lancet Commission on Global Surgery prioritizes high-quality, safe care2 as a crucial part of surgical systems, yet one USA-based analysis measuring quality of care in various healthcare settings found that only 50% to 60% of surgical patients receive quality, evidence-based care.3
Clinical practice that is based on evidence may be described to follow the sequence “ask, acquire, appraise, apply, assess.”4 Barriers arise from the very start of this process. The proven method to frame vague questions into researchable phrases using the mnemonic “population, intervention, comparison, outcome” (PICO) is not widespread in provider groups globally.5 Providers across resource settings also feel stuck at the “acquire” stage in evidence-based practice.6 To improve practical acquisition of evidence-based answers to clinical questions, the Lancet Commission on Global Surgery promoted standardized clinical protocols using the most updated evidence.2 However, cited reasons why providers do not use guidelines include lack of adequate dissemination,7 awareness, familiarity, or agreement on guidelines.8 Some practitioners feel that guidelines slow their practice or do not apply to low-resource settings.8 Institutions pay millions of dollars per year for access to research behind paywalls, and individuals pay on average $30 per paper.9 Even for publicly funded research, paywalls exist for the first year after publication, slowing the already sluggish pace of scientific progress.10 To push for faster access to scientific results, the US government drafted policies requiring immediate public access to papers funded by taxpayers’ dollars, but academic publishers effectively lobbied against the proposed policies.11 In 2016, only 19% of published articles were immediately available on publication.12 A new plan in 11 European countries, known as “Plan S,” aims to increase the number of articles immediately available on publication by requiring that all research with grants from European research councils or funding bodies publish directly to a public-access forum.12 13
Even as the scientific community pushes for public access, such as that provided through “Plan S,” many providers receive no training in the “appraise” portion of the evidence-based framework. The “appraise” stage of evidence-based practice requires financial resources, expertise, and time. In a 2010 study, only 33% of surgeons used primary literature to inform their practice; lack of education in appraising primary literature was described as a primary barrier.14 Most initiatives for education on evidence-based practice require hours of training,15 16 further preventing already time-strapped surgeons from acquiring the skills required to appraise literature.17 As one attempt to overcome these barriers, evidence-based search engines may provide predigested answers, providing an effective “short-cut” when primary literature is inaccessible or too dense to quickly appraise. The American College of Surgeons promotes the global use of these search engines,18 yet many surgeons still lack access to all papers referenced by the search engines and instead use abstracts to guide their practice.19 Aside from one study reporting that cost and language were barriers to practice of evidence-based medicine (EBM),6 very few data exist related to sociodemographic factors related to EBM or using these search engines.
Without adequate support for “acquiring” and “appraising,” the flow of evidence-based practice ends before “application” and “assessment,” never reaching the patient. This study aimed to better understand influencing factors on surgical trauma providers in the Americas as they acquire answers to clinical questions and to assess their level of confidence in appraising that information. We hypothesized that increased English proficiency and country income level would improve providers’ acquisition and application of clinical knowledge.