Discussion
These results from a 3-year period highlight the management challenges in the treatment of patients presenting with a PGI to one urban UK MTC, including the potential for damage to a wide range of structures and the varied options for investigation and intervention. This study has shown that the quadrant of injury can be helpful in identifying those patients most at risk of rectal and urethral injuries early on in their presentation. However, quadrant of injury was not found to be helpful in predicting vascular or nerve injuries. Those patients with a PGI in the lower inner quadrant of the gluteal region had an AR of 18.52% for rectal injury and 55.56% for injury to any significant structure. Although this did not reach statistical significance, it is most likely due to the study population size. From this dataset the authors suggest that those patients with an injury to the lower inner quadrant are considered at high risk of rectal injury, and knowledge of this should contribute to the threshold applied for further investigation. Patients with multiple PGIs should be treated according to the clinical suspicion raised by the injury associated with the greatest anatomic risk. Therefore, any patient with a wound in the lower inner quadrant should be treated as high risk of rectal injury, irrespective of the locations of other injuries.
In keeping with a national trend of increasing knife crime, this study showed that the overall volume of penetrating trauma has increased by 44% and the volume of PGI has increased by 87% compared with the previous 3 years. This reflects local data from another level 1 trauma center within the same city.1 There may be some inaccuracy with the older data in this study due to slightly less mature data systems and processes of data capture; however, there is evidence that the regional increase in the presentation has been part of a nationwide increase in knife crime.6 Due to the complex behavioral and socioeconomic factors associated with knife crime, it is difficult to propose the reasons behind the increase in PGI; however, anecdotally there remains a stigma within this cohort around these injuries and the associated stoma, suggesting that there is a degree of purposeful anatomic targeting.
This study excluded wounds from GSW, which are relatively rare in the UK, and this may explain the lower mortality compared with other literature from settings where GSW is more common, that is, military or civilian contexts outside Europe. However, the peak in presentations among under 18s at around 16:00–17:00 highlights the end of the school day as the time of highest risk of assault with a weapon for adolescents. This is consistent with patterns of knife assault in London established previously.15
Investigation of PGI
The decrease in proportion of patients receiving DRE and RS in the ED is reflective of international consensus, moving away from mandating these tests in all patients and instead using RS in selected cases as a useful adjunct. RS is used at our institution to confirm or refute the presence of a rectal injury and to identify the anatomic location of any injury that can affect further management, and can be done as part of an EUA in the theater rather than performed in the ED. This is considered more likely to yield identification of rectal injury due to the controlled theater environment and be more acceptable to the patient who may find this intolerable in the ED.
There are widespread, and justifiable, reservations about the utility of DRE in assessing for rectal injury, with a previous 2007 study reporting a sensitivity of only 33% (specificity 99%) based on a retrospective analysis of over a thousand patients.16 In another study from 2005, the DRE was shown to give ‘useful information’ in only 5% of cases and changed management in only 4%.17 RS, on the other hand, has been found to have a much higher sensitivity of 94% in one large-scale retrospective study of 22 level 1 trauma centers, which was better than CT in identifying both intraperitoneal and extraperitoneal injuries. The same study found that RS in combination with CT gave an overall sensitivity of 97%.18 RS can be useful in determining the anatomic location of a rectal injury which, given the trend toward managing intraperitoneal injuries and extraperitoneal injuries differently, can aid decision-making for surgical teams.4
The decision on which patients underwent CT was made by the TTL at the time of presentation after a thorough clinical examination. The choice of CT protocol was inconsistent across the study period, with an almost 50:50 split between triple-phase or dual-phase CT and ‘combi’ CT scan. The specificity of CT in detecting rectal injury improved during the study period, which could reflect growing familiarity and experience among reporting radiologists during the time since this unit was established as an MTC in 2010.
Although contrast-enhanced CT is the default imaging in the severely injured trauma patient, penetrating injury to the bowel can be difficult to confirm on CT and is most commonly identified by locules of gas or inflammatory stranding in adjacent soft tissue.1 The gold standard non-invasive investigation is a ‘triple contrast’ CT (with oral, intravenous, and rectal), being quoted with a sensitivity of 97% and a specificity of 98% for diagnosis of peritoneal breach in penetrating torso injury; this is, however, impractical in the acute setting and seldom used at our center.1 19–21 The authors of one military case series of 19 patients with no missed rectal injuries concluded that a CT scan can be a useful screening tool to help identify which patients warrant further investigation.22
Given that in our population CT had a sensitivity of 50.00% and specificity of 92.38% in identifying rectal injury on initial assessment, these data support having a low threshold for assessing any patients at high risk of rectal injury with direct visualization, either with an EUA (±RS) in the operating theater for an extraperitoneal injuries or with a diagnostic laparoscopy for intraperitoneal injuries. Although the decision of what constitutes a high-risk patient for rectal injury will vary from clinician to clinician, the authors suggest that those with rectal bleeding or radiological evidence of bowel wall breach or thickening, presence of a wound tract extending to the bowel or mesentery, or adjacent mesenteric hematoma or stranding should be investigated with an EUA in the theater as these indications are supported by recent literature.18 19 21 While noting that no individual CT finding can be considered both sensitive and specific to bowel injury, the authors also suggest that patients with presence of air or fluid near the bowel wall on CT should also be considered for either observation, serial clinical examination and repeat imaging, or an EUA in the theater at the discretion of the responsible clinician.19 21
Management of colorectal trauma
The management of rectal trauma has traditionally centered on ‘the Four D’s’ of debridement, diversion, drainage, and distal washout. However, this was based on the Allied military experience during World War II and the US military experience during the Vietnam War, where the pattern and mechanism of injury were vastly different from that seen in UK civilian trauma practice outside of major terrorist incidents.2 4 23 One of the few prospective studies on colon trauma by Demetriades et al24 recommended considering primary anastomosis in all patients with colon trauma and identified severe fecal contamination, transfusion of >4 units of blood products within the first 24 hours, and single-agent antibiotic prophylaxis as the only independent risk factors for abdominal complications.
Recent literature has proposed a more nuanced approach to the management of colon and rectal injuries based on the degree of injury and the anatomic location of the injury, in conjunction with other patient factors such as comorbidity, presence of hemorrhagic shock, and concurrent injuries.2 4 25 Clemens et al4 have proposed a treatment algorithm based on the size and location of rectal injury in relation to the peritoneal reflection. In this pathway, an injury affecting greater than 25% of the circumference of the rectum is considered ‘destructive’ and those affecting less than 25% ‘non-destructive’. Non-destructive extraperitoneal injuries are treated either by primary repair if accessible or conservatively with admission and observation. Destructive extraperitoneal injuries are treated with proximal fecal diversion without presacral drainage. Rectal washout is recommended for selected, high-energy injuries only. Intraperitoneal injuries are treated by primary repair if non-destructive and with primary resection and anastomosis if destructive.4 26 27
Of particular importance when considering repair of colorectal injury is the presence of concomitant vascular injury. These cases have reported mortality as high as 36%. This supports a lower threshold to treat these patients with proximal diversion rather than anastomosis; however, this evidence originates from a military case series of high-energy battlefield injuries.4 28
The more nuanced approach is supported by a recent meta-analysis that recommends primary repair or resection with anastomosis in colon trauma unless patients are critically unwell or undergoing damage control surgery (DCS) as these patients have a significantly higher rate of anastomotic leak.29
Given all the injuries in our data set were low-energy wounds from sharp objects and all extraperitoneal injuries, it is perhaps surprising that half of these injuries were managed with fecal diversion. Two (33.34%) of these patients were recognized to have a potentially destructive extraperitoneal injury during EUA and so were appropriately managed with a defunctioning stoma. It could be argued that the one remaining rectal injury treated with a defunctioning stoma could have been initially managed with either primary repair or conservative management following current international guidance.4 24 29 This may represent unfamiliarity with the international guidelines, or there may have been other patient-related or surgeon-related factors that were beyond the remit of this study.
A suggested pathway for management of PGI
Based on the findings of this study, we have identified a need for a pathway providing a systematic and consistent approach to the assessment and initial management of patients presenting with a PGI. A pathway was designed to address the areas of greatest variation and based on previous literature, the evidence from this study, and expert opinion of surgeons, emergency medicine physicians, and radiologists from our MTC. This pathway (figure 4) describes the assessment and initial management, whereby following primary survey and resuscitation, or DCS where required, all patients are imaged with a dual-phase CT scan to assess the risk of rectal, vessel, and nerve injury. The quadrant of injury is useful to help identify high-risk patients for rectal and urethral injury, but is one component of a thorough clinical assessment in combination with judicious use of radiological investigations. As part of the algorithm the authors use CT as a screening tool to identify any immediate life-threatening injuries, such as major hemorrhage or intra-abdominal visceral injury. Those patients deemed to be at high risk of an injury to a vessel, the rectum, or sciatic nerve are then referred to the appropriate specialty for further investigation and management. The data from this study suggest that a CT scan cannot be used to confidently rule out a rectal injury; therefore, where there is clinical suspicion of rectal injury, an EUA, RS, and/or a diagnostic laparoscopy should be performed depending on the suspected anatomic location of injury. The authors recommend the use of a dual-phase CT (with arterial and portal venous phases) to allow for accurate assessment of any vascular injury and allow for efficient planning of any interventional radiological procedure without the need for a return to CT. The pathway has created a clear tool that various specialties feeding into a multidisciplinary trauma team can refer to. This ensures optimized investigation and treatment, minimizing the likelihood of missed injury or unnecessary use of resources. It therefore represents a potential pathway other centers receiving a high proportion of low-energy PGIs could also consider incorporating into practice.
Figure 4St Mary’s pathway for penetrating gluteal injuries. Pt; patient, D/W; discuss with, ED; emergency department, CT; computed tomography, PV; portal venous,EUA; examination under anesthetic, GA; general anaesthetic, Gen Surg; general surgery, IR; interventional radiology, Redthread; local violence reduction charity, RS; rigid sigmoidoscopy, TTL; trauma team leader; Vasc; vascular surgery.