Discussion
The present study stands out for presenting the prognostic value of a variable that is little reviewed in the literature, “Zumkeller index,” which was associated with acute outcomes and which may suggest the presence of cerebral edema or other associated injuries in patients with ASDH. The data presented corroborate the assumption by Zumkeller et al19 that an MLS that exceeds the thickness of the hematoma suggests the presence of associated cerebral edema and/or other parenchymal lesions, which contributes to worst clinical outcome.
In a review of approximately 3000 autopsy cases after TBI, Tandon29 concluded that ASDHs are rarely isolated lesions; in their study, 82% of the cases were associated with parenchymal lesions, which again demonstrates the importance of MLS evaluation. In our study, intraparenchymal lesions were found in 53.5% of patients, and a higher frequency of this finding was observed (90.9%) in patients who were classified as having a ZI >3. Several studies have associated the presence of ICH and its progression with poor prognosis.30–32 The study by Cepeda et al33 demonstrated that when studying the progression of ICH in patients with TBI, ASDH is associated more with this progression. In addition, it highlights the role of higher MLS values in the progression of ICH. In cases where the ZI was greater than 0, the role of MLS was notorious. Therefore, patients with these findings and associated ICH have a greater risk of lesion progression. Cepeda et al33 also demonstrated an unfavorable clinical outcome in 74% of patients with ICH progression, compared with 26% of those who did not. In addition, the number of patients undergoing decompressive craniectomy was significantly higher in patients with ICH progression (75% vs. 25%).
In our study, patients with ZI >3 had an increased frequency of IVH (45.5%) compared with 7.7% of patients with ZI between 0.001 and 3 and 21.1% of patients with negative ZI. According to the literature, the rate of occurrence of IVH in patients with moderate-to-severe TBI ranges between 7.1% and 22%.34–36 The presumed possible mechanisms of IVH are an extension of intracerebral hemorrhage into the ventricular system or rupture of the subependymal veins, which can be deformed by the negative pressure at the time of injury.37 Like ICH, several studies also associate IVH with a poor prognosis.21 The study by Laleva et al36 demonstrated that the main factor related to the onset of IVH is the presence of ICH on admission images. In our cohort, we observed high frequencies of the two lesions in patients with a ZI >3.
It was also observed that 100% of patients with a positive ZI had a traumatic subarachnoid hemorrhage (SAH). Diffuse bleeding resulting from rupture of the subarachnoid vessels in TBI is a predictor well described in the literature.38–40 Similar to what happens in the rupture of aneurysms, traumatic SAH induces vasospasm and cerebral ischemia, which can trigger inflammatory and neurotoxic processes and contribute to brain swelling, which contributes to worsening the outcome of patients.41 42
However, in cases of isolated ASDH, the ZI may play a role as a prognostic factor of mortality because, without a parenchymal lesion, the MLS exceeding the HT may be due to brain swelling and impairment of cerebrovascular reactivity.
The relationship between MLS and HT is promising in terms of prognosis and may help to estimate ICP. Recently, Liao et al20 constructed a model for ICP estimation based on a half-sphere finite-element model using only HT and MLS in ASDH. The ICP values obtained by the normogram created by the authors showed a high correlation with those measured, demonstrating an R2 coefficient of 0.744. Using estimates like these and predictive models like ZI, neurosurgeons can do more with less. In patients with TBI with multiple traumas, estimating ICP and brain swelling also helps prioritize treatment of different regions of the body.
We highlight the high mortality rate of patients with an MLS >3 mm in relation to HT. In our series, there was 81.8% mortality within 14 days for these patients, an even higher rate than that found by Zumkeller et al.19 When the entire length of hospital stay was assessed, 10 of the 11 patients categorized as ZI >3 died. Bartels et al,9 when studying this difference in a small cohort of patients, found a mortality rate of 100% when ZI was greater than 3 mm, which indicates the accuracy of this indicator for use in clinical practice. The authors further suggested that in these patients, the trauma resulted in greater damage than that generated by the hematoma, in addition to having an influence on the anatomy and physiology of the brain, resulting in an acute onset of swelling. This assumption helps to justify the poorer clinical presentation at admission of patients with positive ZI, demonstrated by significantly lower GCS values in the second and third categories of the ZI, as well as the poor pupillary response of patients with ZI >3. It should also be noted that values greater than 3 mm, in addition to being associated with a worse outcome, also implied a reduction in the estimated survival time.
Additionally, our results highlight the potential role of ZI as a variable for modeling studies, since a comparison with more complex scores such as Rotterdam21 and Helsinki22 demonstrated acceptable AUC values. We hypothesize that the values close to the three multivariate models created to assess the prediction of acute ZI outcomes against these scores are because the brain injuries covered by the scores, such as IVH, ICH, and SAH, are related to the positive values of MLS–HT. It should be noted that the intention of our work is not to suggest the replacement of other existing tomography scores because they can be used in the context of other brain injuries and include variables that are associated with the prognosis of TBI; our objective was to present a complementary index to these scores which assesses something not directly included in them. The objective of our multivariate analysis, which compared the ZI with these scores, was to demonstrate that the ZI has a discriminative ability similar to these more complex models, demonstrating its clinical utility in the context of outcome prediction.
To date, only two studies have evaluated the ZI: Zumkeller et al,19 who described the index, and Bartels et al.9 Neither of these studies were conducted in LMICs, which have distinct epidemiological contexts from high-income countries. As we know, LMICs have the highest burden of neurotrauma; however, most of the scientific articles published in journals originate from high-income countries.43–45 Interestingly, in Brazil, many centers already use this “Zumkeller index,” not as a prognostic variable but to decide whether to perform a primary decompressive craniectomy in the setting of ASDH.46 As it is a post-hoc analysis of a prospective study, it is not possible to suggest the indication of decompressive craniectomies for patients with positive ZI. However, cerebral edema and/or associated injuries in this group of patients are notorious. We then suggest the proper management of intracranial hypertension and that future studies of primary decompressive craniectomy address this variable.
Finally, regarding the epidemiological data for ASDH, the literature demonstrates that high mortality rates are more often associated with advanced ages.6 47–49 Wilberger et al,50 in their study, demonstrated that the average age of non-survivors was 59 years, whereas that of survivors was 41 years, a finding similar to that seen in other studies.3 9 In our study, the average age of survivors was 44.4 years and that of non-survivors was 53.4 years. Ryan et al,51 in their study, described falls as the main injury mechanism (57%), followed by automobile crash (23%), which was very close to the study by Leitgeb et al,52 which also presented falls as the main mechanism (51.9%), followed by automobile crash (22.2%). In the present study, the percentages of ASDH resulting from automobile crash and falls were the same (43.9%). Several authors have already demonstrated epidemiological differences in different socioeconomic contexts.53 54 In LMICs, where traffic laws and enforcement are not as effective, automobile crash and trauma mechanisms related to aggression are predominant. Thus, we emphasize that the present study is the first to evaluate the MLS–HT relationship in an LMIC, which contributes to the process of external validation of its practical utility in different contexts.
Study limitations
This study has some limitations. Despite an adequate number of patients for the proposed analyses, this study was restricted to a single center, which may limit the generalization of the findings. In addition, it is a post-hoc analysis of a prospective study. Thus, some variables, such as surgical intervention, could not be controlled. Despite this, we present an adjusted regression model for performing decompressive craniectomy associated with other clinical variables. Besides, to minimize bias of deaths from causes other than TBI, the primary outcome of our study was 14-day mortality. Several authors have already described that this is a useful time to assess prognosis in patients suffering from TBI. In a shorter follow-up period, it is possible to minimize other factors that could contribute to mortality, such as in-hospital infections and late complications. We encourage other authors from various centers around the world to assess the difference between MLS and HT for patients with ASDH and to investigate ZI in prospective cohorts as an indication of decompressive craniectomy. We emphasize the limitation of not providing data on the long-term outcomes of the study population. In future studies, the Glasgow Outcome Scale should be included. However, the difficulty of long-term monitoring of patients with TBI is not restricted to our study, which has been previously reported in the literature, mainly in LMICs.55 56