Discussion
AKI was common during the first week of hospitalization after severe trauma, occurring in almost half of a large population of critically injured patients presenting to a busy urban trauma center. Consistent with prior reports, AKI incidence and stage were associated with prolonged hospitalization, discharge destination other than home, and increased mortality. Additionally, AKI duration was independently and incrementally associated with the same poor outcomes. Due to collinearity, the importance of stage and duration was not directly compared.
Although the relationship between duration and outcomes after trauma has not been previously described, duration of AKI has been noted to be associated with clinical outcomes in other patient populations including medical critical care, cardiac surgery, general hospitalization, and postmyocardial infarction.12 26 Authors have previously distinguished ‘short’ or ‘transient’ duration AKI of ≤2 days from longer durations of AKI. In non-trauma patients, both short-duration and long-duration of AKI have been found to be independently associated with poor long-term outcomes, with a greater magnitude of association with longer duration of AKI. Short-duration AKI was found to be independently associated with mortality, congestive heart failure, and myocardial infarction when compared with patients without AKI.12 27 Long-duration AKI was also associated with increased mortality, myocardial infarction, and development of chronic kidney disease (CKD).12 26 The present study confirms an association between AKI duration and subsequent outcomes in trauma patients.
In non-trauma patients, longer AKI duration was independently associated with poor outcomes after adjusting for stage.12 28 However, in this study of trauma patients, duration and stage were collinear, indicating that duration and stage were not independent. One reason for this difference may be that this study only evaluated relatively short-term outcomes, whereas studies in non-trauma populations measured longer term outcomes such as development of CKD, long-term mortality, or rare events in the generally young and previously healthy population such as congestive heart failure exacerbation and myocardial infarction.12 26 Another reason may be the difference in AKI etiology and time to reversal of the underlying pathophysiology. Over 50% of trauma ICU patients at the study center present with either shock or occult hypoperfusion due to hemorrhage.29 Hemostasis is achieved by a median of 120 minutes from hospital arrival if emergent hemorrhage control is required.30 In contrast, patients with AKI related to sepsis or cardiogenic shock more commonly found in the general ICU literature likely have prolonged renal insults. Finally, the duration that is considered ‘long’ and ‘short’ varies between the trauma literature and the general ICU literature. The impact of long duration on poor outcomes is greatest in patients with an AKI duration of 7 or more days.12 Duration of AKI longer than 7 days was rare in our population, and therefore the distinction between ‘long’ and ‘short’ was made at 2 days (figure 1). A larger multicenter study may determine if AKI in trauma patients is truly different from that in other critically ill patients.
Progress in development of effective therapeutic strategies for the prevention or treatment of AKI has been poor. Supportive care remains the cornerstone of AKI prevention and treatment, regardless of the underlying etiology. According to the KDIGO Clinical Practice Guideline, AKI prevention efforts should include decreasing nephrotoxic exposure, ensuring adequate volume status and perfusion, close monitoring of serum creatinine and urine output, and avoiding hyperglycemia.18 Once AKI has already developed, efforts to mitigate the impact of AKI are limited to avoidance of exacerbating factors and supportive care such as renal replacement therapy. Specific risk factors for post-traumatic AKI include rhabdomyolysis, massive hemorrhage and resuscitation, systemic inflammatory response to trauma, and direct kidney trauma.31 High-quality evidence is lacking regarding the treatment of these underlying conditions to optimize renal recovery.
AKI metrics are used in clinical trials to evaluate the effectiveness of strategies to mitigate or prevent AKI, and to benchmark performance across centers. In trauma, the Trauma Quality Improvement Project (TQIP) provides risk-adjusted outcome metrics to centers for quality improvement purposes. Currently, TQIP only assigns a diagnosis of AKI to those patients who meet criteria for KDIGO AKI stage III. While progression to AKI stage III and need for renal replacement therapy are important outcomes, they only represent a minority of trauma patients with AKI.2 5 6 Thus, interventions to reduce AKI, using this definition, will only potentially benefit a small number of patients. Additionally, this study demonstrated that one-third of severely injured patients admitted to the ICU present with AKI at admission. Thus, incidence of AKI may be just as much a measure of injury severity and prehospital care than trauma center care. Our study suggests that highest stage or duration of AKI would be more granular, clinically relevant metrics to collect than AKI incidence. Additionally, tracking AKI present on arrival would also better inform quality improvement initiatives and clinical trials.
Limitations
Several limitations existed in this study. First, hourly urine output was not considered for AKI diagnosis and staging.4 6 7 There are significant limitations in the accuracy of urine output data retrospectively collected. The effect of this exclusion likely resulted in an underestimation of AKI incidence. Prospective studies of AKI after trauma should incorporate hourly urine output into AKI diagnostic criteria to optimize the value of the diagnosis. Furthermore, mortality and discharge are competing outcomes with AKI duration. A metric such as AKI-Free Days may be used in practice to adjust for these outcomes while evaluating the long-term prognosis of trauma patients who suffer AKI. Third, patients with CKD were not excluded from this study due to absence of accurate data regarding medical history, which is often incomplete among trauma patients requiring immediate ICU care. Furthermore, it is estimated that only 20% of patients with CKD are aware of their illness.32 It will be important to assess the burden of CKD on this patient population and its impact on duration of AKI in future studies. It is expected that patients with underlying CKD will be more prone to AKI and to prolonged AKI after traumatic injury. Finally, the traditional MDRD equation using race as a cofactor was used for estimation of baseline glomerular filtration rate (GFR) given its diagnostic superiority on prior studies.2 However, inclusion of race is problematic as it is not a biologic designation and, in some situations, may worsen disparities.33 Alternate methods of accurate GFR estimations are needed for this patient population.