Discussion
Our systematic review of the impact of medical therapies for asymptomatic BCVI demonstrates two main findings. First, any medical treatment (ASA, Plavix, heparin, warfarin) is likely better than no treatment for the prevention of stroke. Second, there is a paucity of high-quality evidence to guide the specific choice of medical treatment of asymptomatic BCVI to prevent stroke and/or promote vessel healing. Due to limitations inherent in retrospective reviews, only a single study was rated as at a low risk of bias. Overall reporting of screening protocols, treatment choice, and stratification by grade of injury was poor. Although we planned to conduct a meta-analysis, heterogeneity of included studies prevented this aim.
Overall, patients who received any treatment had lower stroke rates compared with patients who did not receive treatment. The allocation to treatment group was not randomized, or in many instances protocolized, which led to selection bias. Caution should be used when interpreting the results. Most patients who received ‘no treatment’ did so because other injuries such as TBI precluded antithrombotic therapy or the patient’s injuries were so devastating that care was transitioned to focus on comfort rather than survival. Similar challenges were seen when examining treatment effect on vessel healing. Only three studies assessed vessel healing, most often in grade I injuries, where healing rates were >50% even in patients not receiving treatment.7 10 24 The low rate of stroke and high rate of vessel healing in low-grade injuries may suggest the need for a more nuanced assessment of risks and benefits for antithrombotic therapy, especially in the setting of relative contraindications such as TBI.
The most common reason identified for not initiating medical therapy for asymptomatic BCVI was risk of bleeding, related to TBI. Only one study specifically included patients with TBI and demonstrated no progression of TBI on follow-up imaging prior to initiating therapy for BCVI.16 Untreated patients had higher grades of BCVI compared with treated patients, as well as a significantly higher stroke risk. The study did not control for baseline patient or injury characteristics, which may explain the results given the median time to stroke for BCVI is ~40 hours. With the high correlation of BCVI and TBI, future studies need to assess the risks and benefits of early antithrombotic therapy in patients with TBI.
Recently two other systematic reviews have examined the management of BCVI.26 28 The Eastern Association for the Surgery of Trauma in 2020 summarized results from 10 studies on the role of antithrombotics compared with no antithrombotics, favoring antithrombotics for stroke prevention with an OR of 0.20 (95% CI 0.06 to 0.65).26 Our review clearly agrees with this finding, although we chose not to perform a meta-analysis due to the high risk of bias and heterogeneity of study patients. We found that not treating asymptomatic BCVI had a stroke rate as high as 25%, compared with almost any other treatment modality where the stroke rate was <10%. Again, it is unclear whether this is entirely due to selection bias and the likelihood of more severely injured patients with head trauma to receive no treatment or delayed treatment. Similar recommendations were given recently by a group of Scandinavian neurosurgeons.28 This group went further to recommend commencing antithrombotic therapy early, even in the setting of TBI or solid organ injury. Indeed, the authors recommended low molecular weight heparin (LMWH) at an antithrombotic dose with transition to ASA 75 mg if feasible. Few studies have investigated the use of LMWH as part of a protocol for asymptomatic BCVI management, and to our knowledge no study has specifically investigated the use of LMWH in the treatment of asymptomatic BCVI.19 29 The risks and benefits for patients with BCVI are high stakes. Delayed or no treatment may result in devastating stroke, whereas treatment with antithrombotic may lead to progression of head injury or bleeding. Without high-quality, properly powered studies, the risks and benefits should be weighed for each individual patient, with the understanding that at time the benefits of antithrombotic therapy for stroke prevention may outweigh the risk of bleeding progression.
Vessel healing is also an important aspect of treatment and may help determine optimal duration of therapy. Currently, the optimal duration of medical treatment is unknown and some patients may stay on lifelong antiplatelet medications. Laser et al30 demonstrated the variable healing rate, well with 30% of grade II injuries worsening but 50% improving. Of higher grade (III/IV) 70% are unchanged at up to 6 months of follow-up. This suggests that patients with low-grade injury could be reimaged, as treatment cessation may be possible. Significantly fewer studies report on healing rates and this is likely related to inconsistent use of follow-up imaging and notoriously poor follow-up of trauma patients. Future studies should include follow-up imaging to delineate time to vessel healing and optimal treatment duration.
Our review has several strengths. First, our search was comprehensive, identifying 19 studies comparing different treatments for BCVI. Further, we assessed the quality of individual studies in accordance with best practices for systematic reviews. Second, rather than perform a meta-analysis, we opted to report results based on specific treatment modalities. This allowed us to compare stroke rates for the two most common treatment choices, ASA, and heparin. The estimated treatment effect is important to establish for future study design, including sample size calculation. Finally, although the overall risk of bias for studies was moderate to high, our review outlines best practices for reporting in future studies on BCVI. We recommend clearly identifying patients with asymptomatic BCVI, stating grade of vessel injury, clearly stating treatment/follow-up protocols including contraindications to treatment, and reporting results both by treatment but also by the highest grade of BCVI in patients with more than one vessel injured.
As with any systematic review our results are limited by the quality of the literature. Given the rarity of BCVI, well-designed multi-institutional studies are required. A trial comparing ‘no treatment’ with treatment for asymptomatic BCVI is likely not ethical. Ideally a randomized non-inferiority trial would compare the two most common treatments, ASA (81 mg or 325 mg) with heparin, with clearly defined inclusion/exclusion criteria.
Although BCVI is uncommon, the potential outcome of stroke can be devastating. Any medical treatment is better than no treatment and future studies are needed to determine the ‘best’ treatment with respect to stroke prevention and vessel healing, as well as clearly define which patients have true contraindications to antithrombotic therapy.