Discussion
XR is currently the first-line diagnostic tool for detection of LEF-related injuries of the skeleton in older individuals presenting to the ED. XR findings are frequently equivocal, resulting in subsequent CT imaging for diagnostic assurance. To the best of our knowledge, this is the first systematic literature review aimed at assessing the diagnostic performance of XR in detecting skeletal injuries after LEF. Our search yielded relatively few observational, predominantly retrospective, studies. The studies included in our systematic analysis demonstrated considerable clinical and statistical heterogeneity, whereby performance of a meta-analysis was not feasible. The assessment of test performance characteristics of the individual studies demonstrated that the diagnostic accuracy of XR was only moderate to poor, depending on the skeletal regions under investigation. Estimated sensitivities were 52% or less, NPV ranged from 14% to 81%, and LR− was 0.4, at best, indicating that a negative XR does not safely rule out fractures of the rib cage, thoracic or lumbar spine, and pelvic ring, with a currently unknown clinical relevance.
Four of the studies addressed this issue and reported about the clinical and surgical outcomes of the target population as secondary outcomes.19–21 24 An increased (more accurate) detection of posterior pelvic ring fractures led to an increase in surgical therapy, whereby, in these patients, early CT examination shortened the hospital LOS in patients treated surgically.21 However, when the treatment policy of pelvic ring fractures of an institution obviates surgical treatment, an increase in CT-detected posterior pelvic ring fractures did not influence the hospital admission rates and hospital LOS.24 Furthermore, an accurate diagnosis of rib fractures does not result in differences in hospital LOS, ICU admission rate or in-hospital mortality (7.3% without rib fractures vs. 10.3% with rib fractures), without adjustment for overall injury severity.19 The most comprehensive retrospective assessment of accurate fracture detection including the spine, rib cage, and pelvic ring demonstrated that the rate of surgical treatment and intervention was not different, if different imaging strategies (only XR, only CT, XR and CT) were compared.20 However, the retrospective design of all of these studies does not permit a conclusive determination of whether the accurate diagnosis of fractures significantly alters clinical or surgical outcomes. Current poor evidence demands future prospective randomized clinical trials, to assess whether a safe diagnosis of fractures in the older adults with LEF is beneficial for resource management (eg, ED LOS), clinical and surgical decision making, diagnostic and treatment costs, risk of radiation and, most importantly, patient-centered clinical outcomes.30
This systematic review has some strengths and limitations. Strengths of our study were a well-defined search protocol and comprehensive search strategy across multiple databases and strict adherence to the PRISMA guidelines. Furthermore, we focused only on studies that evaluated CT imaging as the gold standard for fracture diagnosis in the ED setting or within a short-term period after the initial fall incident. The major limitation of our study is the lack of available high-quality evidence on this subject. Our systematic database search did not retrieve randomized controlled trials or high-quality non-randomized trials, therefore, the evidence generated is considered weak, at best. By expanding the inclusion criterion ‘Population’ we were able to include studies with patients aged ≥55 years or all-comer populations with a majority (≥50%) of patients aged ≥65 years or all-trauma populations with a majority (≥50%) of patients who sustained an LEF. This strategy retrieved nine additional studies for review. Second, there was a significant heterogeneity between the studies, due to variations in study quality, end points and outcomes as well as different inclusion criteria and patient selection. Therefore, we deemed a meta-analysis to be not feasible. Third, applying QUADAS criteria for quality assessment, this revealed an overall high risk of bias of the studies and across the studies, mainly concerning patients’ spectrum, test execution, and diagnostic review performance. Finally, the reviewers who assessed study quality and risk of bias were not blinded to the authors’ names nor the institution in which the study was conducted nor to the journal in which the study was published. This approach could potentially lead to bias in scoring the methodological quality of the studies. Therefore, the results of this study should be interpreted with these shortcomings in mind.