Discussion
Integration of AAST EGS grades into clinical workflows (figure 1) has the potential to standardize communication between providers, protocolize clinical care, and facilitate point-of-care research using a prospectively assigned disease severity for EGS conditions. Our study highlights a phased strategy to adopt a new clinical workflow in an academic healthcare center in the USA and barriers to adoption identified via systematic QI initiatives. Through integration of a standardized documentation template into our EMR, we demonstrated that uniform anatomic severity scores can be prospectively assigned to patients in real time at the time of initial consultation. This standardized approach facilitated consistent data collection and is readily scalable and automated, allowing for integration into data registries. Similar approaches have led to successful research and QI initiatives in other surgical subspecialties including trauma (Trauma Quality Improvement Program20) and colorectal surgery.21 In addition to data collection, our experiences demonstrated that AAST EGS scores provide a foundation to design EGS-specific educational initiatives, and may provide infrastructure for improving communication among the care team.
Respondents at both the resident and faculty level were most enthusiastic about the potential EGS grading systems to improve opportunities for research. To date, a national database of EGS patients does not exist, in part because EGS patients have such a broad range of clinical pathologies and indications for operative or non-operative management. In particular, surgical registries do not routinely capture patients with EGS conditions who are managed non-operatively (eg, uncomplicated diverticulitis, appendicitis, and pancreatitis).5 An important aspect of our clinical workflow is that EGS severity grading was assigned by clinicians at the time of patient evaluation. This arguably imposes minimal additional physician burden, while providing accurate EGS grading classification of patient disease. We hypothesize that more widespread adoption of this approach across institutions has the potential to improve accuracy of future local and national EGS registries, as well as provide an opportunity for granular clinical research of EGS patients who are managed both operatively and non-operatively. Additionally, imaging operative, and pathologic criteria have also been described7 and could be integrated into this workflow to improve the robustness of classification.
Our early experience with the uniform anatomic severity grading system-based workflow did illustrate some significant barriers to adoption. We unexpectedly found that AAST EGS grades had not been uniformly deemed as a useful means to structure communication around EGS patients. However, respondents did note that they thought the system could facilitate improved communication with more formal education and widespread adoption. Structured communication frameworks such as the SBAR22 23 and iPASS24 tools have been shown to improve communication between members of the care team, decrease medical errors, and improve patient outcomes. We think that routine integration of EGS severity grading into clinical workflow can help create a shared mental model when discussing EGS conditions among care teams.
Through discussions with trainees and attending surgeons, we noted that familiarity with the system and its potential benefits are key to garnering adoption of the novel clinical workflow. This speaks to the importance of including attending surgeons in education initiatives early. This was a limitation in our original roll-out strategy, as only two of the attending surgeons interviewed had any a priori knowledge of the EGS severity grading system. It is also important for leadership to provide feedback to junior residents, including holding them accountable for using the proper documentation. In addition, didactic sessions should stress the benefits of the novel clinical workflow including opportunities for research, especially in areas of investigation for which adequate data and research infrastructure do not exist.
Finally, EGS grading guidelines (distributed as a handbook) were intended to provide an efficient reference for residents at the point of care and our data suggest that the tool is useful for junior residents (especially early in PGY-2 when they were relatively inexperienced). However, these guidelines are intended to be a mechanism for organizing diagnosis and management decisions. It should be underscored that these guidelines are not intended to replace sound clinical judgement and adequate supervision. Not all patients are classifiable by the EGS criteria, putting them at risk of being placed on an inappropriate care pathway. Proper patient selection is essential to the successful implementation of care pathways and treatment protocols, and it should be recognized early on that not all patients will be good candidates for these protocols. Providers should be encouraged to consider patient selection carefully and use clinical judgement when applying any treatment protocols.
This study did not specifically include intervention and control groups which may limit our ability to draw conclusions. Additionally, resident participation was limited to a subset of mid-level residents and attending surgeons, creating the possibility for some selection bias and may limit generalizability. Furthermore, this work sought to understand the opinions of a select group of general surgery residents from a single residency program. Because each residency program has its own culture, logistics and unique obstacles, the findings of this study may not be applicable to other academic surgery programs.