Emergency department adult airway management
Once the adult trauma patient arrives in the emergency department, the environment and options for airway management change significantly. In the emergency department, you have a variety of personnel more experienced in advanced airway management (emergency medicine, respiratory therapy, anesthesia, trauma surgery), a more controlled situation, better lighting, more medication options, and a vast array of equipment including airway adjuncts. However, the guiding principles of airway management remain the same: open airway, oxygenation, and ventilation.
Prior to intubation
The trauma team should make significant preparations prior to patient arrival and planned intubation. Personnel should be gathered prior to patient arrival and for patients with high likelihood for requiring advanced airway management (eg, low GCS (Glasgow Coma Scale)), the entire trauma team should be activated. Every trauma airway should be managed under the premise that there will be a difficult airway, as there is typically not time to complete an evaluation of predictors of difficult laryngoscopy. All advanced airway equipment should be easily accessible and checked for functionality, including laryngoscopes (direct and video), a variety of endotracheal tubes, airway adjuncts (stylets, NPA, and OPAs), rescue airways, and equipment for a surgical airway. Medications needed for rapid sequence intubation should be drawn up and readily available. This preprocedure preparation is an ideal situation for an intubation checklist, or preintubation time out, as these steps have been shown to decrease intubation-related complications and improve adherence to recognized safety measures.21 22
Once the decision has been made to intubate the adult trauma patient, basic airway maneuvers should be used during the time leading up to intubation. Ideally, the patient should have supplemental oxygen applied and preoxygenated for several minutes prior to intubation. Preoxygenation will prolong safe apnea time and prolong apnea time without desaturation.23 If the patient is spontaneously breathing only supplemental oxygen is needed, but if patient is not breathing spontaneously the patient should receive assisted BVM ventilation with jaw thrust, NPA, OPA as needed. Passive oxygenation should continue through the entire intubation process until the definitive airway is secured.
Simultaneous resuscitation
Before and during the intubation process, the severely injured trauma patient should receive simultaneous resuscitation to address abnormalities in breathing and circulation that may be exacerbated during intubation. An existing pneumothorax could be converted to a tension pneumothorax after intubation and positive pressure ventilation, so chest tubes should be considered simultaneous with intubation for patients with an identified pneumothorax. Similarly, intubation and positive pressure ventilation can lead to significant hemodynamic derangement including postintubation hypotension in the apparently stable trauma patient or even cardiac arrest in the trauma patient who arrives hemodynamically unstable.24 25 Postintubation hypotension is associated with increased mortality in trauma patients.26–28 For patients who arrive hemodynamically unstable or stable with a shock index >0.8,29 30 several options for simultaneous resuscitation exist including early blood transfusion using a “circulation first” approach,31 resuscitative endovascular balloon occlusion of the aorta,32 and intravenous push-dose pressors.33 34 In particular, if the airway can be maintained with basic maneuvers and the patient is oxygenating and ventilating, placement of a definitive airway with an endotracheal tube can be deferred until the hemodynamic status of the patient can be addressed.31
Medications
A variety of medications are available to assist with the rapid sequence of adult trauma patients, but the medications can be broken down into two broad categories of induction agents and paralytics. Options for induction agents include sedative/hypnotics (ie, propofol, etomidate, barbiturates, high dose ketamine, high dose benzodiazepines, very high dose opioids), amnestic agents (lower dose benzodiazepines), analgesic agents (ketamine, opioids), with etomidate used most often. Etomidate is dosed at 0.3 mg/kg IV for an induction dose. Etomidate has advantageous characteristics including rapid onset and limited effect on hemodynamics.35 36 The biggest concern with etomidate is adrenal suppression and subsequent decrease in serum cortisol; however, this alteration in lab values has not been associated with adverse clinical outcomes.37 38 Ketamine, dosed at 1.5 mg/kg intravenously, is another option as an induction agent for rapid sequence intubation in trauma patients. It has characteristics that are potentially beneficial in trauma patients including rapid onset, analgesia, amnesia, and sympathomimetic effects and has been shown to have clinical outcomes comparable to etomidate for rapid sequence intubation38–40
Paralytic agents include depolarizing (succinylcholine) and non-depolarizing (rocuronium, pancuronium, vecuronium) agents. Succinylcholine, dosed at 1.5 mg/kg intravenously, is the most common paralytic agent used in trauma intubations. It has a rapid onset and short half-life, making it an ideal agent if there is a failed intubation, allowing quick return of spontaneous respirations. The most common non-depolarizing agent is rocuronium, dosed at 1.2 mg/kg intravenously, and approximates the rapid onset of succinylcholine but has a longer duration of action. Although there are not many direct comparisons of the two drugs, rocuronium has fewer side effects and contraindications and may be associated with lower mortality in patients with severe traumatic brain injury.41 42 As mentioned previously, push-dose pressors may be used to treat or prevent hypotension around the time of intubation.33 34 The two most common agents used are epinephrine and phenylephrine, but epinephrine has the advantage of having both alpha and beta effects. A dilute epinephrine solution may be administered in 5 to 20 μg doses every 2 to 5 minutes to achieve desired effect.
Orotracheal intubation
While preparing for orotracheal intubation, passive oxygenation should continue throughout the intubation process. This can be achieved by placing a nasal cannula on the patien and delivering high-flow oxygen until an endotracheal tube i is placed and confirmed. The placement of the orotracheal tube can be performed via either direct laryngoscopy or video laryngoscopy, and both modalities should be considered complimentary in the management of the difficult trauma airway. Direct laryngoscopy has the advantages of a lower cost, direct view of the airway (three dimensional, maintain depth perception) and is less prone to have view obscured due to fog or blood on video camera.43 However, video laryngoscopy has made a significant impact in airway management and may now be the preferred technique for trauma intubations. Video laryngoscopy offers numerous advantages over direct laryngoscopy including: superior views of the glottis (Cormack-Lehane I/II), higher intubation success rates for patients with anatomically difficult airways, in obese patients, and in those with the cervical spine held in-line, less spine movement, and higher intubation success rates by inexperienced airway providers.44 45 In addition, a recent Cochrane Review concluded that video laryngoscopy improves glottic views, decreases airway trauma, and reduces the number of failed intubations, particularly in patients with a difficult airway.45
Confirmation of orotracheal tube placement
Once the patient has been orotracheally intubated, the next priority is confirmation of endotracheal tube position. The tube should be inserted to about 21 cm for women and 23 cm for men, when measuring from the corner of the mouth. There are several indicators of appropriate tube placement including tube condensation, chest rise and fall, and breath sounds, but the most accurate confirmatory tests for tube confirmation are seeing the tube go through the cords at intubation and end tidal CO2 measurement.46 This can initially be performed with a colorimetric CO2 monitor that changes color when it contacts the expired CO2 but can then be switched to a capnographer that can display an end tidal CO2 value and a graphical tracing on the monitor. Once the tube is confirmed with CO2, it can be secured and a chest X-ray performed to evaluate the depth of tube insertion and appropriate position 2 to 3 cm above the carina.47 Depending on which medications were used for induction and paralysis, consideration should be given for providing the patient with longer acting pain medicine, sedation, and potentially paralysis for the subsequent trauma evaluation and treatment. In the event of postintubation hypotension, the physician should confirm appropriate ventilator settings, evaluate for tension pneumothorax, and look for sources of ongoing hemorrhage.
Failed orotracheal intubation
Several difficult airway algorithms exist that offer options in the situation if failed orotracheal intubation, including the commonly cited algorithm from the American Society of Anesthesia.48 However, many of the options available in the management of the elective airway (awake fiberoptic intubation, awakening the patient) are not applicable in the trauma airway management. For a trauma patient, if initial orotracheal intubation fails, the first step is to revert back to basic airway maneuvers and analyze if the airway can be supported with noninvasive methods. The patient should receive a jaw thrust, an OPA, supplemental oxygen, and receive BVM ventilation and then ask the questions: Is the airway open? Is the patient oxygenating? Is the patient ventilating? If the answer to these questions is “no,” then the patient should receive a surgical airway. If the answer to these questions is “yes,” then the patient can be supported, and a clear plan can be developed for the next attempt at orotracheal intubation. While oxygenating and ventilating the patient noninvasively, several things should be considered prior to the next attempt.
If not already done so, additional equipment should be gathered including smaller endotracheal tubes, bougies (gum elastic, lighted), direct laryngoscope if videolaryngoscopy was initially used and vice versa, alternative blades (Miller versus Macintosh) for the direct laryngoscope, rescue airways, and the surgical airway instrument tray should be opened. The view of the airway (blood, edema, Cormack-Lehane view) should be discussed to analyze the difficulty of the next attempt. Depending who performed the first attempt, the next attempt should be performed by a more experienced operator, likely the most experienced in the room.49 If anesthesia has not already responded to the trauma activation, they should be summoned to the room to increase the number of team members with advanced airway experience and expertise. Prior to the next attempt, the patient should once again receive preoxygenation as this will allow safe apnea time for the next attempt, which will presumably be more difficult and may take longer. This is an important step, if possible, as the time it takes for oxygen saturation to drop from 90% to 60% is much faster than the time it takes to drop from 100% to 90%.50 The closer the oxygen saturation can get to 100%, the more time the team will have for the next attempt. Once the situation is optimized a second intubation can be attempted (or at most three attempts), if this fails the patient should receive a surgical airway.