Discussion
Our study showed that pediatric traumas occur most often in the afternoon and evening hours between 15:00 and 21:00 at our institution. Over 47% of all pediatric TTAs happened during this 6-hour window, which coincides with the time frame between after school and bedtime. The vast majority of pediatric TTAs occurred on Saturdays, which is again associated with the times when children are active and out of school. Correspondingly, the highest rate of pediatric TTAs occurred on Saturdays between 15:00 and 21:00, when pediatric TTAs were 3.6 times more likely to occur than any other time period throughout the week. The lowest rate of pediatric trauma occurred in the early morning hours between 03:00 and 06:00, when most children are likely still asleep.
As the hourly and daily rates of pediatric TTAs were highest during times when children are active and out of school, by similar logic, we expected to find an increase during the summer months when school is in recess. Interestingly, and contrary to what we expected, we did not find a significant difference in monthly volume. October had the highest volume and November and December had the least, but these differences did not meet statistical significance. Prior studies have demonstrated a relationship between trauma volume and time of year, but this association seems to be mediated by temperature, with higher trauma admissions associated with higher temperatures.8–11 There are two possible explanations as to why we did not detect significant seasonal variation in our pediatric TTA volume. First, Santa Barbara County enjoys relatively mild seasons with minimal temperature fluctuations; the average monthly temperature varies by less than 7.2°C throughout the year.12 Seasonal changes may not impact our monthly patterns of pediatric trauma as much as centers located in other regions. Second, given only 5 years of registry data was used and the size of our trauma center, it is possible our study is underpowered to answer this question (type II statistical error), and that true differences in monthly trauma volumes exist. Further exploration using a larger data set might clarify this interesting finding.
Establishing and maintaining a trauma system requires a considerable commitment of staffing and resources. Understanding a hospital’s local temporal patterns of TTAs can aid in structuring local trauma system resources. In addition to ensuring adequate expert trauma and specialty practitioners, a trauma system must be able to reliably mobilize operative, laboratory, radiological, and social support services at all hours in response to trauma. An ideal resource utilization system would allow for dynamic upstaging of resources to match increases in demand, rapid downstaging as demand tapers, and built-in flexibility to accommodate surges when they occur unexpectedly. Additionally, it would allow for planned interruptions in critical hospital services to be scheduled during low trauma volume periods. Training sessions, major operative cases involving the pediatric trauma team, restocking, maintenance of laboratory and diagnostic equipment, and physical plant modifications can significantly disrupt normal trauma workflow and compromise trauma patient care, and would optimally be scheduled outside peak TTA time. One critical step in designing an intelligent trauma staffing model is first understanding the unique patterns of trauma patients’ ebb and flow at the individual hospital, which likely varies according to geography, climate, community served, and proximity to other trauma centers. This is particularly relevant for pediatric trauma victims, for whom resources may be scarce but at times in high demand, and so efficient allocation is paramount. Through our analysis, we were able to evaluate and subsequently validate our current staffing model for pediatric TTAs.
Our pediatric trauma staffing model has changed over time in response to expansions and contractions of available pediatric trauma specialists. In its current incarnation, all pediatric TTAs are staffed and managed by our already on-call adult trauma providers, and our pediatric trauma specialists are routinely engaged as consultants with their involvement being scaled to the degree of injury. This structure shifts the burden of the acute trauma response and management to a robust panel of adult trauma providers, protects our limited pediatric trauma panel, and engages them in an advisory capacity for our pediatric TTAs, the majority of whom are found to have only minor injuries. Given our relatively low number of pediatric traumas, this system buffers the response burden of pediatric TTAs, and allows us to have efficient pediatric trauma coverage with limited providers. As such, the impact of peak and non-peak periods is lessened on the pediatric trauma team, and minimizes the chances of exhausting this limited resource. However, this structure would not be appropriate for centers with higher pediatric TTA volumes in whom available depth of coverage allows for a dedicated and independent pediatric trauma team; the importance of this type of individualized trauma center analysis cannot be overstated when deciding how best to use the resources available to respond to injured patients. Though the granular details of our analysis may only be relevant to a limited number of high-level community trauma centers in temperate climates that have relatively low pediatric trauma burdens, how the analysis was done is applicable and relevant to any trauma system seeking to understand how best to deploy their limited pediatric-specific trauma resources.
This study has several important limitations. This was a retrospective review of a prospectively maintained trauma database and is vulnerable to coding and retrieval errors. SBCH is the designated Pediatric Trauma Center for the Santa Barbara County region, and though the majority of pediatric trauma in our area is referred to us, we were not able to capture those patients to whom referral was not offered, or those refusing transfer from remote hospitals; the impact these patients have on our understanding of pediatric trauma in our region is unknown. These data are a comprehensive review of the temporal patterns of pediatric trauma in our region, but whether these data are applicable to other regions is uncertain; analysis by other trauma systems of their own data is warranted and will allow for comparative studies.