Discussion
On June 4, 2019, the US House of Representatives passed The Pandemic and All-Hazards Preparedness and Advancing Innovation (PAHPAI) Act of 2019; the Mission Zero Act is included in the PAHPAI. This legislation includes the implementation of the recommendations from the June 2016 National Academy of Sciences, Engineering and Medicine report, A National Trauma Care System: Integrating Military and Civilian Trauma Systems to Achieve Zero Preventable Deaths After Injury. The Mission Zero Act builds on the legislative framework from the 2017 National Defense Authorization Act by supporting the incorporation of military trauma care providers into the civilian setting. TS-MCPs are now supported by law to increase military trauma care readiness.3 As the DoD enters into partnerships with civilian trauma centers having practical prediction models to assess the “readiness value” of TS-MCP is imperative and objective measurements are a starting point for this determination.4 5 Predictable educational experiences facilitate planning, expectation management and help inform/establish the goals of the trauma skills sustainment training. Having a method to potentially predict a case-volume threshold in terms of location, timing length of courses will be informative for site selection as well as planning purposes. These results support the use of our previously described tool to predict the operative trauma volume at TS-MCP courses.
While operative experience is not the sole factor in determining the most appropriate TS-MCP, case volume cannot be underestimated as foundational to preparing a team or provider for surgical care of the combat casualty. Many military treatment facilities report low operative and trauma volumes, resulting in military providers that lack exposure to the critical skills needed to care for severely injured combat casualties.6–8 In addition, a model that accurately predicts trauma case volume at an institution would be valuable in establishing TS-MCP courses. This method, as demonstrated in this study, provides an accurate range of possibilities to allow for planning. Most importantly, it provides an accurate minimum number of cases. While only providing a rough prediction of the number of cases a rotator will experience, through this method a minimum number of operative cases can be predicted with some certainty. If a “trauma volume threshold” becomes a deployment standard, this model would facilitate planning at a readiness site. Additionally, this method also provides some seasonal information on trauma volumes that can further allow for educational planning to include potentially increasing the duration of courses in winter months.
An ideal scenario would be to test a similar predictive model for individual types of cases. As the military adopts a knowledge Skills Abilities metric for readiness, which places a “point” value on specific types of cases, this model may help predict the timeline to skills or abilities readiness. Unfortunately, this prediction is not very practical for specific types of cases. As an example, earlier research at Saint Louis University identified 76 urgent operative vascular cases over the course of 731 days, an overall rate of 0.1 vascular cases per day.9 Other institutions may have much higher volume of urgent operative vascular cases that make predictive modeling for a course practical, but this is unlikely. Specific experience with complex vascular trauma cases, and other cases that improve combat casualty care readiness will likely have to be obtained through training courses such as ACS ASSET and Emergency War Surgery course which is being modified to support a military trauma needs.
The most significant weakness in this model is the lack of data on specific times of the day or night for operative cases. Using a calendar day, patients could in theory arriving shortly after midnight on 1 day and be operated on shortly before midnight the following day and count for the first day. Though this possible scenario is an uncommon event, it remains an uncertainty. This inherent inaccuracy in the calculation could account for the decreased accuracy of the model with orthopedic cases, as orthopedic injuries are seldom life threatening and interventions are more likely to be delayed to the following day or beyond for definitive treatment. This illustrates that the practical application or predictive methodology can be challenging, and consistent data measurement is imperative. The data in this analysis were from trauma registries which can be recorded using different software and accessed by different personnel at different times. Any variation in data collection or retrieval methods can alter predictions and outcomes. Therefore, there would be further improvement in this model if higher fidelity timelines were possible, including accurate times for patient arrival and OR start times to better predict the number of surgical cases during a rotation. Additional analysis of factors that affect orthopedic operative case timing would also be prudent to improve orthopedic accuracy.
There are a multitude of factors that contribute to the success of a TS-MCP. While this model provides a very quantitative assessment, there are significant qualitative factors as well. Other crucial attributes to a successful TS-MCP include leadership commitment, departmental support, administrative maintenance, competing GME interests, geographic location, exposure to different damage control strategies (resuscitation and surgical), length of courses, and having permanent military cadre present. While the aforementioned attributes of a successful TS-MCP are crucial, ultimately trauma readiness for military surgeons relies on an appropriate level of experience and operative volume. Additionally, the acuity of the cases has to be taken into consideration. High acuity operative cases managing multi-cavity hemorrhage in patients that require massive transfusion are extremely valuable for military trauma readiness. This model does not address the acuity of the case and used the time course of surgical intervention as a surrogate for urgency. If this model proves to be useful when used by the DoD, additional variates such as blood transfusion, injury severity score, and procedure codes can be incorporated into the model to provide not just case volume but military-relevance case acuity. If more specific requirements are added though, invariably the predicted length of time required in any course will go up if very specific operative experiences are required. For visiting surgeons that are expecting to deploy, the length of courses impacts their practices and families at home.
This study prospectively validates our previously described method for predicting trauma case volume at TS-MCP. Two previous publications used different methodologies that arrived at similar predictions.2 9 The methods demonstrated in this paper are pragmatic, straightforward, and easily applicable. No model can predict the extremes however, and trauma centers can have seemly random lulls in case volumes; therefore, TS-MCPs and the mission requirements that govern them must have built in contingency plans like simulation, cadaver training, extended courses, or didactics. Model development and refinement should be ongoing as more data are gathered and a learning model developed that changes as case volume and case acuity change. Further refinement and modification will hopefully be able to predict trauma and guide course structure to eliminate situations where rotators fail to meet their operative case goal. Prospective application of the model in its current state for validation of existing TS-MCP and guidance for determination of future TS-MCP is expected to validate and lead to further refinement.
This model can potentially be used as a predictive tool for the assessment of surgical trauma opportunities at current or future TS-MCPs. Unfortunately, experienced case volume is not a direct surrogate for competency and quality of care of a surgeon. Additional assessment and validation tools will need to be developed to augment this model and help determine competency of surgeons. Robust trauma performance improvement program already exist at many sites that would be considered for TS-MCPs; therefore, rotators should be required to participate in these program. Objective competency assessments, especially during short rotations, are challenging and should be developed, studied, and refined in conjunction with ongoing DoD efforts. Research efforts are also necessary to determine the ideal length of time for these program and how to best assess and train surgeons for wartime skills, despite inherent variance in competencies. With this model, possible TS-MCPs sites that have a predictably large number of urgent surgical cases can be identified. If there are predictable surgical trauma cases, the opportunity to evaluate rotators for competency while they operate on those cases also exists.