Discussion
In this first of its kind large multi-institutional observational study, no evidence was found that presumptively administered antibiotics decreased the incidence of empyema or pneumonia. Currently, practice patterns regarding the use of antibiotic therapy for post-traumatic TT vary widely among providers and include routine, selective, or no antibiotic treatment. Rates of observed antibiotic usage vary throughout the literature. In 2000, the EAST Practice Management Guidelines Work Group recommend a first-generation cephalosporin with duration of no longer than 24 hours.23 The Western Trauma Association published a similar recommendation in 2014 that underscored the need for Gram-positive peri-operative antimicrobial usage of less than 24 hours.24 In the current observational study, 14.4% of patients received antibiotics for TT. The lower rate of antibiotic use in this study may reflect population variances or changing individual or institutional practice patterns. Antibiotic selection was highly varied across providers and institutions.
Infectious complications following TT have been extensively studied. The most significant infections following post-traumatic TT include empyema and pneumonia. Empyema and pneumonia can be introduced (1) iatrogenically from chest tube placement, (2) may result from pleural violations, or (3) result from diaphragmatic disruptions from the initial trauma, retained hemothorax, or hematogenous spread from other sources.23 In 2006, Sanabria et al published a meta-analysis of five randomized controlled trials and reported pneumonia in 16% of patients who were not treated with antibiotics and 6.6% of patients were treated.9 The authors also reported empyema in 7.6% of patients who were not treated and 1.1% of patients who were treated.9 Several large observational studies have previously been performed; however, these have primarily been single center studies that followed institutional guidelines for selective antibiotic therapy.19 25 In these cases, empyema rates were reported at 3.1% and 1.6%.19 25 In the present study’s sensitivity analysis, there was no significant difference in the primary outcomes. The NoABX group demonstrated an observed infectious complication rate lower than reported in the meta-analysis from Sanabria et al.9 Conversely, the ABX group had higher rates than observed in the meta-analysis. This is may be the result of patient selection bias for treatment with antibiotics.
Challenges with interpreting the existing body of literature as a whole include variation in the antibiotic type and duration, as well as use of non-standard dosing regimens.15 Studies have also used varied and non-standard definitions for diagnosing empyema and pneumonia.23 Pulmonary contusion, multiple chest tube placement, retained HPTX, duration of TT, length of ICU stay, laparotomy, and thoracic AIS have all been shown to be independent risk factors for post-traumatic empyema development.13 18 25 These factors, as well as other possible cofounders including location of chest tube placement and qualification of the operative provider are inconsistently controlled for in the literature and clinical practice. Similar confounders and limitations may explain why there remains conflicting evidence on this topic.
A large randomized controlled trial published by Maxwell et al as well as several observational studies have found no difference in infectious complications between groups who received antibiotics and those who did not.11 12 16–20 However, contrary to these findings, there is a substantial volume of literature which has demonstrated decreased infectious complications with the use of presumptive antibiotics.7–10 26–32 In this study, there were no significant differences in pneumonia or empyema between the ABX and NoABX groups. Concordant with the present study, there was a borderline association between antibiotic use and pneumonia in the measure of association analysis which did not reach statistical significance.
Although ICULOS was significantly different between groups in univariate comparison, no outcomes differed significantly in multivariable analysis. The multivariable model demonstrated a modestly increased rate ratio for hospital LOS among the ABX patients. Mortality occurred in 9%–10% of each group, with no significant differences observed in either the primary or sensitivity analysis. The final secondary outcome measured was C. difficile colitis. This was an infrequent occurrence, with two and three patients diagnosed in the ABX and NoABX groups, respectively.
Limitations
This study was subject to many of the known limitations of an observational design. While nearest neighbor matching was used to help reduce bias due to unmeasured cofounders, including provider-level preferences of antibiotic use with TT, as well as antibiotic selection and duration. As such, it is possible providers were more likely to prescribe antibiotics for patients deemed at higher risk for infection. Next, the wide array of antibiotics prescribed among the ABX group may have obscured the results such that the odds and rate ratios reported here represent the means of widely varying treatment effects. Insufficient data were available to assess dose–response relationships between outcomes of interest and patients who received ABX for TT. Finally, the results of this study may reflect a type II error. However, bias also skews results toward the null. Thus, it is not possible to quantify the contribution of either limitation to the lack of differences we observe. Despite these limitations, to our knowledge, this is the largest study to date to prospectively assess the use of antibiotics for post-traumatic TT. It is difficult to reconcile a topic in which both randomized controlled studies and large observational studies across decades continue to return conflicting results. Ultimately, prescribing antibiotics may not reduce pneumonia or empyema. Nonetheless, these results should be interpreted with caution.