Background
Although considerable progress has been made in trauma resuscitation methods, traumatic hemorrhage due to severe coagulopathy remains a major cause of mortality in patients with trauma.1 Critical hypofibrinogenemia occurs early during major blood loss and causes a bleeding tendency with uncontrollable oozing at multiple injury sites. Fibrinogen, the final substrate of coagulation and the ligand of platelet glycoprotein (GP)IIb/IIIa receptors, plays a key role in clot formation. As fibrinogen is the first coagulation factor to fall below a critical value during massive bleeding and hemodilution,2 it seems plausible that it should be the first protein to be supplied to patients with trauma. A prospective observational study reported that the fibrinogen level at presentation is an independent predictor of mortality for patients with trauma.3 Early clinical data suggest that fibrinogen supplementation, as part of an algorithm for hemostatic therapy based on point-of-care-guided coagulation factor concentrates, improves outcomes for traumatic hemorrhage by improving clot strength and reducing blood loss, thereby increasing survival.4
Conventional approaches for patients with trauma with massive hemorrhage, including damage control resuscitation using blood component therapy, have been shown to result in persistent coagulopathy, bleeding, and poor outcomes.5 There is an increasing number of reports describing the limitations of fresh frozen plasma (FFP) for treating ongoing severe hypofibrinogenemia in various clinical settings, including critically injured patients with trauma.6 However, FFP is the only treatment currently available for acquired hypofibrinogenemia in Japan. Cryoprecipitate is not generally supplied by the Japanese Red Cross, and a purified fibrinogen concentrate derived from pooled human plasma (Fibrinogen HT; Japan Blood Products Organization, Tokyo, Japan) is available for use only in patients with congenital fibrinogen deficiency in Japan. Fibrinogen concentrate shows significant effects on the recovery of plasma fibrinogen levels and subsequent hemostasis in both hereditary and acquired hypofibrinogenemic states,7 including trauma-induced coagulopathy.8 ,9 Analysis of decades of pharmacovigilance data shows a promising safety profile for fibrinogen concentrate,10 and off-label use has occurred in aortic replacement surgery,11 massive obstetric hemorrhage, and severe trauma in Japan.
The aim of this study was to examine the effects of pre-emptive treatment with fibrinogen concentrate on the transfusion volume and prognosis for survival of patients with trauma.