Skip to main content
Log in

Insight into the lithium/hydrogen bonding in (CH2)2X...LiY/HY (X: C=CH2, O, S; Y=F, Cl, Br) complexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The nature of the lithium/hydrogen bonding between (CH2)2X(X: C=CH2, O, S) and LiY/HY(Y=F, Cl, Br) have been theoretically investigated at MP2/6-311++G (d, p) level, using Bader’s “atoms in molecules (AIM)” theory and Weinhold’s “natural bond orbital (NBO)” methodology. The molecule formation density differences (MFDD) of the titled complexes are analyzed. Two kinds of geometries of the lithium/hydrogen bonded complexes are compared. As a whole, the nature of lithium bond and hydrogen bond are different. For the same electron donor and the same acceptor, lithium bond is stronger than hydrogen bond. For the same electron acceptor and different kind of donors, the interaction energies follows the n-type> π-type > pseudo-π-type order. For the same (CH2)2X, the interaction energy increases in the sequence of Y=F, Cl and Br for lithium bond systems while it decreases for hydrogen bond systems. Electron transfer plays an important role in the formation of lithium bond systems while it is less important in the hydrogen bond systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kirby A (1994) Advances in physical organic chemistry. Academic, New York

    Google Scholar 

  2. Chein JCW (1984) Polyacetylene: Chemistry, physics and material science, Chap 11. Academic, New York

    Google Scholar 

  3. Klebe G (1994) J Mol Biol 237:212–235

    Article  CAS  Google Scholar 

  4. Chandra AK, Pal S, Limaye AC, Cadre SR (1995) Chem Phys Lett 247:95–100

    Article  CAS  Google Scholar 

  5. McDonald SA, Johnson GL, Keeler BW, Andrews L (1980) J Am Chem Soc 102:2892–2896

    Article  CAS  Google Scholar 

  6. Curtiss LA, Blander M (1988) Chem Rev 88:827–841

    Article  CAS  Google Scholar 

  7. Hobza PZ (1988) Chem Rev 88:871–897

    Article  CAS  Google Scholar 

  8. Hobza KM, Sponer J, Mejzlik P, Vondrask J (1997) J Comput Chem 18:1136–1150

    Article  CAS  Google Scholar 

  9. Ammal SSC, Venuvanalingam P (1998) J Chem Phys 109:9820–9830

    Article  CAS  Google Scholar 

  10. Ammal SSC, Venuvanalingam P (1997) J Chem Phys 107:4329–4336

    Article  CAS  Google Scholar 

  11. Ott H, Däschlein C, Leusser D et al (2008) J Am Chem Soc 130:11901–11911

    Article  CAS  Google Scholar 

  12. Sannigrahi AB, Kar T, Niyogi BG (1986) Proc Indian Acad Sci Chem Sci 96:253–258

    Article  CAS  Google Scholar 

  13. Ault BS, Pimentel GC (1975) J Phys Chem 79:621–626

    Article  CAS  Google Scholar 

  14. Hudson AJ, Naumkin FY, Oh H et al (2001) Faraday Discuss 118:191–207

    Article  CAS  Google Scholar 

  15. Kollman PA, Liebman JF, Allen LC (1970) J Am Chem Soc 92:1142–1150

    Article  CAS  Google Scholar 

  16. Sannigrahi AB, Kar T, Niyogi BG et al (1990) Chem Rev 90:1061–1076

    Article  CAS  Google Scholar 

  17. Streiwiezer A, Bachrach SM, Dorigo A et al (1995) Lithium Chem. Wiley, New York, pp 1–43

    Google Scholar 

  18. Salai C, Ammal S, Venuvanalingam P (2000) J Phys Chem A 104:10859–10867

    Article  Google Scholar 

  19. Sapse AM, PvR S (eds) (1995) Lithium chemistry, theoretical and experimental overview. Wiley, New York, p 67

    Google Scholar 

  20. Ammal SSC, Venuvanalingam P, Paul S (1997) J Chem Phys 107:4329–4336

    Article  CAS  Google Scholar 

  21. Ammal SSC, Venuvanalingam P, Paul S (2000) J Chem Phys 104:10859–10864

    CAS  Google Scholar 

  22. Kisiel Z, Fowler PW, Legon AC (1995) Chem Phys Lett 232:187–191

    Article  CAS  Google Scholar 

  23. Kisiel Z, Fowler PW, Legon AC (1994) J Chem Phys 101:4635–4643

    Article  CAS  Google Scholar 

  24. Legon AC, Rego CA, Wallwork AL (1992) J Chem Phys 97:3050–3059

    Article  CAS  Google Scholar 

  25. Evans CM, Hollowa JH, Legon AC (1997) Chem Phys Lett 267:281–287

    Article  CAS  Google Scholar 

  26. Kisiel Z, Fowler PW, Legon AC (1997) J Chem Soc Faraday Trans 93:4253–4258

    Article  Google Scholar 

  27. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  28. Frisch MJ, Trucks GW, Schlegel HB et al. (2004) Gaussian 03, Revision D.01. Gaussian Inc, Wallingford CT

    Google Scholar 

  29. Bader RFW (1990) Atoms in molecules: A quantum theory. Clarendon, Oxford, UK

    Google Scholar 

  30. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  31. Biegler-König F (2000) AIM 2000, Version 1.0. University of Applied Science, Bielefeld, Germany

    Google Scholar 

  32. Zheng SJ, Cai XH, Meng LP (1995) QCPE Bull 15:25–28

    Google Scholar 

  33. Zou JW, Jiang YJ, Guo M et al (2005) Chem Eur J 11:740–747

    Article  CAS  Google Scholar 

  34. Politzer P, Murray JS, Peralta-Inga Z (2001) Int J Quantum Chem 85:676–684

    Article  CAS  Google Scholar 

  35. Politzer P, Laurence PR, Jayasuriya K (1985) Environ Health Prospect 61:191–202

    Article  CAS  Google Scholar 

  36. Murray JS, Politzer P (1998) J Mol Struct THEOCHEM 425:107–114

    Article  CAS  Google Scholar 

  37. Politzer P, Murray JS (1999) Trends Chem Phys 7:157–165

    CAS  Google Scholar 

  38. Hagelin H, Brinck T, Berthelot M et al (1995) Can J Chem 73:483–488

    Article  CAS  Google Scholar 

  39. Koch U, Popelier PLA (1995) J Phys Chem 99:9747–9754

    Article  CAS  Google Scholar 

  40. Popelier PLA (2000) Atoms in molecules. An introduction. Prentice Hall, Harlow, UK

    Google Scholar 

  41. Popelier PLA (1998) J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

  42. Bader RFW, Nguyen-Dang TT, Tal Y (1981) Rep Prog Phys 44:893–948

    Article  Google Scholar 

  43. Pimentel GC, McClellan AL (1960) The hydrogen bond. Freeman, San Francisco

    Google Scholar 

  44. Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627–628

    Article  Google Scholar 

  45. Jenkins S, Morrison I (2000) Chem Phys Lett 317:97–102

    Article  CAS  Google Scholar 

  46. Zheng SJ, Hada M, Nakastuji H (1996) Theor Chim Acta 93:67–75

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Contract NO: 20771033, 20801017, 20973053), the Natural Science Foundation of Hebei Province (Contract NO. B2008000141, B2008000138), the Education Department Foundation of Hebei Province (NO.2007123, 2009137, 2009138) and the Foundation of Hebei Normal Univeristy(L2008B06, L2009Y06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingpeng Meng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Zeng, Y., Zhang, X. et al. Insight into the lithium/hydrogen bonding in (CH2)2X...LiY/HY (X: C=CH2, O, S; Y=F, Cl, Br) complexes. J Mol Model 17, 757–767 (2011). https://doi.org/10.1007/s00894-010-0768-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0768-7

Keywords

Navigation